当前位置: X-MOL 学术Exp. Astron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Attitude determination for nano-satellites – I. Spherical projections for large field of view infrasensors
Experimental Astronomy ( IF 3 ) Pub Date : 2021-04-23 , DOI: 10.1007/s10686-021-09730-y
Kornél Kapás , Tamás Bozóki , Gergely Dálya , János Takátsy , László Mészáros , András Pál

Due to the advancement of nano-satellite technology, CubeSats and fleets of CubeSats can form an alternative to high-cost large-size satellite missions with the advantage of extended spatial coverage. One of these initiatives is the Cubesats Applied for MEasuring and LOcalising Transients (CAMELOT) mission concept, aimed at detecting and localizing gamma-ray bursts with an efficiency and accuracy comparable to large gamma-ray space observatories. While precise attitude control is not necessary for such a mission, attitude determination is an important issue in the interpretation of scintillator detector data as well as optimizing downlink telemetry. The employment of star trackers is not always a viable option for such small satellites, hence another alternative is necessary. A new method is proposed in this series of papers, utilizing thermal imaging sensors to provide simultaneous measurement of the attitude of the Sun and the horizon by employing a homogeneous array of such detectors. The combination with Sun and horizon detection w.r.t. the spacecraft would allow the full 3-DoF recovery of its attitude. In this paper we determine the spherical projection function of the MLX90640 infrasensors planned to be used for this purpose. We apply a polynomial transformation with radial corrections to map the spatial coordinates to the sensor plane. With the determined projection function the location of an infrared point source can be determined with an accuracy of \(\sim 40^{\prime }\), well below the design goals of a nano-satellite designed for gamma-ray detection.



中文翻译:

纳米卫星的姿态确定– I.大视野红外传感器的球形投影

由于纳米卫星技术的进步,CubeSats和CubeSats机队可以扩大空间覆盖范围,从而代替高成本的大型卫星任务。这些举措之一是“用于测量和定位瞬态的立方体卫星”(CAMELOT)任务概念,旨在以与大型伽玛射线空间天文台相当的效率和准确性来检测和定位伽玛射线暴。尽管对于这样的任务并不需要精确的姿态控制,但是姿态确定是闪烁体探测器数据解释以及优化下行链路遥测中的重要问题。对于这样的小型卫星,使用恒星追踪器并非总是可行的选择,因此,另一种替代方法是必要的。在这一系列论文中提出了一种新方法,利用热成像传感器,通过采用均匀排列的此类探测器,可以同时测量太阳和地平线的姿态。该航天器与太阳和地平线检测相结合将允许其姿态完全3自由度恢复。在本文中,我们确定计划用于此目的的MLX90640红外传感器的球形投影功能。我们应用带有径向校正的多项式变换将空间坐标映射到传感器平面。使用确定的投影功能,可以以以下精度确定红外点源的位置:该航天器将允许其姿态完全恢复到3自由度。在本文中,我们确定计划用于此目的的MLX90640红外传感器的球形投影功能。我们应用带有径向校正的多项式变换将空间坐标映射到传感器平面。使用确定的投影功能,可以以以下精度确定红外点源的位置:该航天器将允许其姿态完全恢复到3自由度。在本文中,我们确定计划用于此目的的MLX90640红外传感器的球形投影功能。我们应用带有径向校正的多项式变换将空间坐标映射到传感器平面。使用确定的投影功能,可以以以下精度确定红外点源的位置:\(\ sim 40 ^ {\ prime} \),远低于设计用于伽马射线探测的纳米卫星的设计目标。

更新日期:2021-04-23
down
wechat
bug