当前位置: X-MOL 学术Int. J. Photoenergy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Role of Interfacial Oxide Layer in MoOx/n-Si Heterojunction Solar Cells
International Journal of Photoenergy ( IF 3.2 ) Pub Date : 2021-04-23 , DOI: 10.1155/2021/6623150
X. M. Song 1, 2 , Z. G. Huang 2 , M. Gao 1 , D. Y. Chen 1 , Z. Fan 2 , Z. Q. Ma 1, 3
Affiliation  

Interfacial oxide layer plays a crucial role in a MoOx/-Si heterojunction (MSHJ) solar cell; however, the nature of this interfacial layer is not yet clarified. In this study, based on the experimental results, we theoretically analyzed the role of the interfacial oxide layer in the charge carrier transport of the MSHJ device. The interfacial oxide layer is regarded as two layers: a quasi -type semiconductor interfacial oxide layer (SiOx(Mo))1 in which numerous negatively charged centers existed due to oxygen vacancies and molybdenum–ion-correlated ternary hybrids and a buffer layer (SiOx(Mo))2 in which the quantity of Si-O bonds was dominated by relatively good passivation. The thickness of (SiOx(Mo))1 and the thickness of (SiOx(Mo))2 were about 2.0 nm and 1.5 nm, respectively. The simulation results revealed that the quasi -type layer behaved as a semiconductor material with a wide band gap of 2.30 eV, facilitating the transport of holes for negatively charged centers. Additionally, the buffer layer with an optical band gap of 1.90 eV played a crucial role in passivation in the MoOx/-Si devices. Furthermore, the negative charge centers in the interfacial layer had dual functions in both the field passivation and the tunneling processes. Combined with the experimental results, our model clarifies the interfacial physics and the mechanism of carrier transport for an MSHJ solar cell and provides an effective way to the high efficiency of MSHJ solar cells.

中文翻译:

界面氧化物层在MoOx / n-Si异质结太阳能电池中的作用

界面氧化物层起着的MoO了至关重要的作用X / - Si异质(MSHJ)太阳能电池; 但是,该界面层的性质尚未阐明。在这项研究中,基于实验结果,我们从理论上分析了界面氧化物层在MSHJ器件的电荷载流子传输中的作用。界面氧化物层被视为两层:一个准-型半导体界面氧化物层(SiO X(Mo)的)1,其中众多带负电荷的中心存在由于氧空位和钼离子相关的三元杂交和缓冲层( SiO x(Mo))2,其中Si-O键的数量主要由相对较好的钝化作用所决定。(SiO的厚度x(Mo))1和(SiO x(Mo))2的厚度分别为约2.0nm和1.5nm。仿真结果表明,准-型层表现为与2.30电子伏特的宽带隙的半导体材料,有利于对带负电荷的中心空穴的传输。此外,具有1.90 eV光学带隙的缓冲层在MoO x中的钝化中起着至关重要的作用- /硅器件。此外,界面层中的负电荷中心在场钝化和隧穿过程中都具有双重功能。结合实验结果,我们的模型阐明了MSHJ太阳能电池的界面物理特性和载流子传输机理,为提高MSHJ太阳能电池的效率提供了有效途径。
更新日期:2021-04-23
down
wechat
bug