当前位置: X-MOL 学术Med. Biol. Eng. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A finite element–guided mathematical surrogate modeling approach for assessing occupant injury trends across variations in simplified vehicular impact conditions
Medical & Biological Engineering & Computing ( IF 3.2 ) Pub Date : 2021-04-21 , DOI: 10.1007/s11517-021-02349-3
P R Berthelson 1, 2 , P Ghassemi 3 , J W Wood 1, 2 , G G Stubblefield 1, 4 , A J Al-Graitti 5 , M D Jones 5 , M F Horstemeyer 1, 4 , S Chowdhury 3 , R K Prabhu 1, 2
Affiliation  

A finite element (FE)–guided mathematical surrogate modeling methodology is presented for evaluating relative injury trends across varied vehicular impact conditions. The prevalence of crash-induced injuries necessitates the quantification of the human body’s response to impacts. FE modeling is often used for crash analyses but requires time and computational cost. However, surrogate modeling can predict injury trends between the FE data, requiring fewer FE simulations to evaluate the complete testing range. To determine the viability of this methodology for injury assessment, crash-induced occupant head injury criterion (HIC15) trends were predicted from Kriging models across varied impact velocities (10–45 mph; 16.1–72.4 km/h), locations (near side, far side, front, and rear), and angles (−45 to 45°) and compared to previously published data. These response trends were analyzed to locate high-risk target regions. Impact velocity and location were the most influential factors, with HIC15 increasing alongside the velocity and proximity to the driver. The impact angle was dependent on the location and was minimally influential, often producing greater HIC15 under oblique angles. These model-based head injury trends were consistent with previously published data, demonstrating great promise for the proposed methodology, which provides effective and efficient quantification of human response across a wide variety of car crash scenarios, simultaneously.

Graphical abstract



中文翻译:

一种有限元引导的数学替代建模方法,用于评估简化的车辆碰撞条件变化中的乘员伤害趋势

提出了一种有限元 (FE) 引导的数学替代建模方法,用于评估不同车辆碰撞条件下的相对伤害趋势。碰撞引起的伤害的普遍性需要量化人体对撞击的反应。有限元建模通常用于碰撞分析,但需要时间和计算成本。然而,替代建模可以预测 FE 数据之间的损伤趋势,需要较少的 FE 模拟来评估完整的测试范围。为了确定这种伤害评估方法的可行性,碰撞引起的乘员头部伤害标准(HIC 15) 趋势是根据不同冲击速度(10-45 英里/小时;16.1-72.4 公里/小时)、位置(近侧、远侧、前侧和后侧)和角度(-45 到 45°)的克里金模型预测的,并进行比较之前公布的数据。分析这些响应趋势以定位高风险目标区域。撞击速度和位置是最有影响的因素,HIC 15随着速度和与驾驶员的接近程度而增加。冲击角度取决于位置,影响最小,通常会产生更大的 HIC 15在斜角下。这些基于模型的头部损伤趋势与先前发布的数据一致,表明所提出的方法具有巨大的前景,该方法可同时对各种车祸场景中的人类反应进行有效和高效的量化。

图形概要

更新日期:2021-04-21
down
wechat
bug