当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Near-complete depolymerization of polyesters with nano-dispersed enzymes
Nature ( IF 64.8 ) Pub Date : 2021-04-21 , DOI: 10.1038/s41586-021-03408-3
Christopher DelRe 1, 2 , Yufeng Jiang 1, 2 , Philjun Kang 3 , Junpyo Kwon 2, 4 , Aaron Hall 1 , Ivan Jayapurna 1 , Zhiyuan Ruan 1 , Le Ma 1, 2 , Kyle Zolkin 1 , Tim Li 1 , Corinne D Scown 5 , Robert O Ritchie 1, 2, 4 , Thomas P Russell 2, 6 , Ting Xu 1, 2, 3
Affiliation  

Successfully interfacing enzymes and biomachinery with polymers affords on-demand modification and/or programmable degradation during the manufacture, utilization and disposal of plastics, but requires controlled biocatalysis in solid matrices with macromolecular substrates1,2,3,4,5,6,7. Embedding enzyme microparticles speeds up polyester degradation, but compromises host properties and unintentionally accelerates the formation of microplastics with partial polymer degradation6,8,9. Here we show that by nanoscopically dispersing enzymes with deep active sites, semi-crystalline polyesters can be degraded primarily via chain-end-mediated processive depolymerization with programmable latency and material integrity, akin to polyadenylation-induced messenger RNA decay10. It is also feasible to achieve processivity with enzymes that have surface-exposed active sites by engineering enzyme–protectant–polymer complexes. Poly(caprolactone) and poly(lactic acid) containing less than 2 weight per cent enzymes are depolymerized in days, with up to 98 per cent polymer-to-small-molecule conversion in standard soil composts and household tap water, completely eliminating current needs to separate and landfill their products in compost facilities. Furthermore, oxidases embedded in polyolefins retain their activities. However, hydrocarbon polymers do not closely associate with enzymes, as their polyester counterparts do, and the reactive radicals that are generated cannot chemically modify the macromolecular host. This study provides molecular guidance towards enzyme–polymer pairing and the selection of enzyme protectants to modulate substrate selectivity and optimize biocatalytic pathways. The results also highlight the need for in-depth research in solid-state enzymology, especially in multi-step enzymatic cascades, to tackle chemically dormant substrates without creating secondary environmental contamination and/or biosafety concerns.



中文翻译:

使用纳米分散酶几乎完全解聚聚酯

酶和生物机械与聚合物的成功连接可在塑料的制造、利用和处置过程中提供按需改性和/或可编程降解,但需要在具有大分子底物的固体基质中进行可控的生物催化1,2,3,4,5,6,7 . 嵌入酶微粒会加速聚酯降解,但会损害主体性能,并无意中加速了具有部分聚合物降解的微塑料的形成6,8,9。在这里,我们表明通过纳米级分散具有深活性位点的酶,半结晶聚酯可以主要通过链端介导的过程解聚降解,具有可编程的延迟和材料完整性,类似于聚腺苷酸化诱导的信使 RNA 衰变10. 通过工程酶-保护剂-聚合物复合物,利用具有表面暴露活性位点的酶实现持续合成也是可行的。酶含量低于 2% 的聚(己内酯)和聚(乳酸)在几天内即可解聚,在标准土壤堆肥和家用自来水中,聚合物向小分子的转化率高达 98%,完全消除了当前的需求在堆肥设施中分离和填埋他们的产品。此外,嵌入聚烯烃中的氧化酶保留了它们的活性。然而,烃类聚合物不像它们的聚酯对应物那样与酶紧密结合,并且产生的反应性自由基不能对大分子主体进行化学修饰。该研究为酶-聚合物配对和酶保护剂的选择提供了分子指导,以调节底物选择性和优化生物催化途径。结果还强调了对固态酶学进行深入研究的必要性,特别是在多步酶级联中,以解决化学休眠底物而不产生二次环境污染和/或生物安全问题。

更新日期:2021-04-21
down
wechat
bug