当前位置: X-MOL 学术Annu. Rev. Phys. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In Situ Surface-Enhanced Raman Spectroscopy Characterization of Electrocatalysis with Different Nanostructures
Annual Review of Physical Chemistry ( IF 14.7 ) Pub Date : 2021-04-20 , DOI: 10.1146/annurev-physchem-090519-034645
Bao-Ying Wen 1 , Qing-Qi Chen 1 , Petar M. Radjenovic 1 , Jin-Chao Dong 1 , Zhong-Qun Tian 1 , Jian-Feng Li 1
Affiliation  

As energy demands increase, electrocatalysis serves as a vital tool in energy conversion. Elucidating electrocatalytic mechanisms using in situ spectroscopic characterization techniques can provide experimental guidance for preparing high-efficiency electrocatalysts. Surface-enhanced Raman spectroscopy (SERS) can provide rich spectral information for ultratrace surface species and is extremely well suited to studying their activity. To improve the material and morphological universalities, researchers have employed different kinds of nanostructures that have played important roles in the development of SERS technologies. Different strategies, such as so-called borrowing enhancement from shell-isolated modes and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS)-satellite structures, have been proposed to obtain highly effective Raman enhancement, and these methods make it possible to apply SERS to various electrocatalytic systems. Here, we discuss the development of SERS technology, focusing on its applications in different electrocatalytic reactions (such as oxygen reduction reactions) and at different nanostructure surfaces, and give a brief outlook on its development.

中文翻译:


不同纳米结构的电催化原位表面增强拉曼光谱表征

随着能量需求的增加,电催化成为能量转换中的重要工具。使用原位光谱表征技术阐明电催化机理可以为制备高效电催化剂提供实验指导。表面增强拉曼光谱(SERS)可以为超痕量表面物种提供丰富的光谱信息,非常适合研究其活性。为了改善材料和形态学的通用性,研究人员采用了各种不同的纳米结构,这些结构在SER​​S技术的发展中发挥了重要作用。不同的策略,例如所谓的从壳隔离模式增强借用和壳隔离纳米粒子增强拉曼光谱(SHINERS)卫星结构,已经提出了获得高效拉曼增强的方法,这些方法使得将SERS应用于各种电催化系统成为可能。在这里,我们讨论SERS技术的发展,重点是它在不同的电催化反应(如氧还原反应)中和在不同的纳米结构表面上的应用,并对它的发展给出简要的展望。

更新日期:2021-04-21
down
wechat
bug