当前位置: X-MOL 学术Extreme Mech. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Toughness of a composite in which sliding between fibers and matrix is rate-sensitive
Extreme Mechanics Letters ( IF 4.7 ) Pub Date : 2021-04-20 , DOI: 10.1016/j.eml.2021.101317
Shawn R. Lavoie , Sammy Hassan , Junsoo Kim , Tenghao Yin , Zhigang Suo

It has been common to use brittle constituents to form tough composites. For example, ceramic fibers and a ceramic matrix are brittle, but their composite can be tough, provided the matrix can slide relative to the fibers. Here we study the effect of rate-dependent sliding on toughness. Consider a crack through the matrix, with the fibers being intact and bridging the crack. The composite is subject to a tensile load normal to the crack. Both the fibers and the matrix are elastic, and the sliding stress between them is linear in their relative velocity. Far away from the crack, the matrix does not slide relative to the fibers, and the deformation is elastic. Near the crack, the matrix slides relative to the fibers, and the deformation is inelastic. When the rate of the applied load is low, the sliding stress is low, so that tension in each fiber is distributed over a long length. Breaking the fiber dissipates elastic energy over a long length of the fiber. This de-concentration of stress leads to high toughness. When the rate of the applied load is high, the sliding stress is also high, so that tension in the fiber is concentrated in a short length near the crack plane. This concentration of stress leads to low toughness. We model this rate-sensitive toughness using a shear lag model. The strain in the fiber satisfies a diffusion equation. When the composite is subjected to load at a constant strain rate, before the fiber breaks, the sliding zone increases with time. We discuss stress de-concentration in various materials.



中文翻译:

复合材料的韧性,其中纤维和基质之间的滑动对速率敏感

通常使用脆性成分来形成坚韧的复合材料。例如,陶瓷纤维和陶瓷基质是脆性的,但是如果基质可以相对于纤维滑动,则它们的复合材料可以是坚韧的。在这里,我们研究了速率依赖性滑动对韧性的影响。考虑穿过基质的裂缝,其中纤维是完整无缺的,并且弥合了裂缝。复合材料承受垂直于裂纹的拉伸载荷。纤维和基体都是弹性的,它们之间的滑动应力在它们的相对速度上是线性的。远离裂纹,基体不会相对于纤维滑动,并且变形是弹性的。在裂纹附近,基体相对于纤维滑动,变形是无弹性的。当施加的负载率低时,滑动应力低,因此,每根纤维中的张力会分布很长。断裂纤维会在较长的纤维长度上耗散弹性能。应力的这种集中导致了高韧性。当施加的负载率高时,滑动应力也高,使得纤维中的张力集中在裂纹面附近的短长度内。这种应力集中导致较低的韧性。我们使用剪切滞后模型对该速率敏感性韧性进行建模。纤维中的应变满足扩散方程。当复合材料以恒定的应变速率承受载荷时,在纤维断裂之前,滑动区域会随时间增加。我们讨论了各种材料中的应力集中。应力的这种集中导致了高韧性。当施加的负载率高时,滑动应力也高,使得纤维中的张力集中在裂纹面附近的短长度内。这种应力集中导致较低的韧性。我们使用剪切滞后模型对该速率敏感性韧性进行建模。纤维中的应变满足扩散方程。当复合材料以恒定的应变速率承受载荷时,在纤维断裂之前,滑动区域会随时间增加。我们讨论了各种材料中的应力集中。应力的这种集中导致了高韧性。当施加的负载率高时,滑动应力也高,使得纤维中的张力集中在裂纹面附近的短长度内。这种应力集中导致较低的韧性。我们使用剪切滞后模型对该速率敏感性韧性进行建模。纤维中的应变满足扩散方程。当复合材料以恒定的应变速率承受载荷时,在纤维断裂之前,滑动区域会随时间增加。我们讨论了各种材料中的应力集中。我们使用剪切滞后模型对该速率敏感性韧性进行建模。纤维中的应变满足扩散方程。当复合材料以恒定的应变速率承受载荷时,在纤维断裂之前,滑动区域会随时间增加。我们讨论了各种材料中的应力集中。我们使用剪切滞后模型对该速率敏感性韧性进行建模。纤维中的应变满足扩散方程。当复合材料以恒定的应变速率承受载荷时,在纤维断裂之前,滑动区域会随时间增加。我们讨论了各种材料中的应力集中。

更新日期:2021-04-30
down
wechat
bug