当前位置: X-MOL 学术Water Air Soil Pollut. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Chemical Characteristics of Cloud Water and Sulfate Production Under Excess Hydrogen Peroxide in a High Mountainous Region of Central Japan
Water, Air, & Soil Pollution ( IF 2.9 ) Pub Date : 2021-04-20 , DOI: 10.1007/s11270-021-05099-y
Masako Kagawa , Nagayoshi Katsuta , Yutaka Ishizaka

Over the last two decades, atmospheric sulfur dioxide (SO2) concentrations have decreased in air-polluted regions. However, this decrease was accompanied by a rise in cloud water acidity (pH), which remains below 5. With this change, gas-phase hydrogen peroxide (H2O2) exceeded SO2 in most of these regions. These conditions where SO2 < H2O2 occurred at Mt. Norikura (2770 m.a.s.l.) during the 1900s. Therefore, to reveal the aqueous-phase oxidation of SO2 by H2O2, the present study investigated the inorganic and organic major ions and Se concentrations in cloud water in addition to aerosols and concentrations of gas species including O3, NOx, and SO2 collected in cloud events at Mt. Norikura during the summer of 1999. Backward air trajectory analyses indicated that the (NH4)2SO4 and trace (NH4)HSO4 aerosols originated from industrial and metropolitan areas in southwest Japan. The cloud water pH was between 3.6 and 4.4. The aqueous-phase SO42−/NO3 ratio (1.2 ± 0.6) was lower than that of the early 1990s (2.2) and 1960s (> 10) in our observation site, which was due to power plant restrictions in Japan since the 1970s. The ion species concentrations in cloud water indicated that cloud acidification resulted from dissolution of gaseous HNO3 and SO2, whereas gaseous hydrochloric acid and organic acid had a minor contribution to the acidification. Significant losses of Cl and Mg2+ were observed in some of the cloud water. The excess value of non-sea-salt sulfate (nss-SO42−) over NH4+ in cloud water implies the in-cloud oxidation of gaseous SO2 to aqueous SO42−. A Se tracer technique was used to conduct in-situ measurements of in-cloud SO42− production. The results showed that the in-cloud production varied in a range between 7 ± 2 and 41 ± 14%. This temporal variation might be due to ambient SO2 concentrations based on Henry’s law.



中文翻译:

日本中部山区过氧化氢过量时云水和硫酸盐生产的化学特征

在过去的二十年中,在空气污染的地区,大气中的二氧化硫(SO 2)浓度有所降低。但是,这种下降伴随着浊水酸度(pH)的上升,该上升仍保持在5以下。随着这种变化,在大多数这些区域中,气相过氧化氢(H 2 O 2)超过了SO 2。SO 2 <H 2 O 2的这些条件发生在Mt。1900年代的Norikura(2770马斯拉)。因此,揭示了H 2 O 2对SO 2的水相氧化,本研究调查了云水中除浮质外的气溶胶以及包括O 3,NO x和SO 2在内的气体物种的浓度,还研究了云水中的无机和有机主离子以及Se的浓度。1999年夏季的Norikura。向后的空气轨迹分析表明(NH 42 SO 4和痕量(NH 4)HSO 4气溶胶起源于日本西南部的工业和大都市地区。浊水的pH在3.6至4.4之间。将水相SO 4 2- / NO 3 -在我们的观测地点,该比率(1.2±0.6)低于1990年代初(2.2)和1960年代(> 10),这是由于1970年代以来日本的发电厂限制。云水中的离子种类浓度表明,云状酸化是由气态HNO 3和SO 2溶解引起的,而气态盐酸和有机酸对酸化的贡献较小。的Cl显著损失-和Mg 2+中的一些云水的观察。云水中的非海盐硫酸盐(nss-SO 4 2-)相对于NH 4 +而言过高,意味着气态SO 2在云中氧化为SO 4水溶液2−。Se示踪剂技术用于进行云中SO 4 2-产生的原位测量。结果表明,云内产量在7±2到41±14%的范围内变化。该时间变化可能是由于基于亨利定律的环境SO 2浓度。

更新日期:2021-04-20
down
wechat
bug