当前位置: X-MOL 学术Case Stud. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrothermal and entropy production analyses of magneto-cross nanoliquid under rectified Fourier viewpoint: A robust approach to industrial applications
Case Studies in Thermal Engineering ( IF 6.8 ) Pub Date : 2021-04-20 , DOI: 10.1016/j.csite.2021.100974
S. Shaw , M.K. Nayak , A.S. Dogonchi , Ali J. Chamkha , Yasser Elmasry , Radi Alsulami

The present article has been groomed to explore the boundary-driven magnetized flow of cross nanoliquid over thin needle subject to auto catalysis chemical reactions. In addition to it, the effect of entropy optimization model is incorporated and transportation of heat under non-uniform heat source/sink, Cattaneo-Christov heat flux (rectified Fourier) viewpoint (CCHF), and non-linear thermal radiation is also taken into account. Furthermore, the Brownian and thermophoresis aspects of nanoliquid are invoked. The dimensionless governing equations are solved by apposite shooting scheme. The outcomes of the present study via demonstrated graphs and numerical benchmarks seem to indicate that controlled Sakiadis and Blausius flow pattern of cross nanofluids is attained due to incremented magnetic field strength. Temperature ratio parameter contributes the upgradation of thermal boundary layer thickness and homogenous reaction rate leads to the diminution of nanoparticles concentration. The relative values of needle velocity and the velocity of cross nanofluid are most important factor for the regulation of viscous drag force and rate of heat transportation. Augmented Weissenberg parameter and Reynolds number are the prime factor for the uplift of the flow field and the related layer thickness. Furthermore, the existence of CCHF could result in augmentation in Nusselt.



中文翻译:

整流傅立叶视界下磁交叉纳米液体的水热和熵产分析:工业应用的可靠方法

本文已进行了梳理,以研究受自动催化化学反应影响的细针状交叉纳米液体的边界驱动磁化流。除此之外,它还融合了熵优化模型的效果,并且在非均匀热源/散热器,Cattaneo-Christov热流(整流傅立叶)视点(CCHF)和非线性热辐射下的热传递帐户。此外,还涉及了纳米液体的布朗和热泳方面。无量纲控制方程通过适当的射击方案求解。通过证实的图形和数值基准,本研究的结果似乎表明,由于磁场强度的增加,可以实现交叉纳米流体的受控Sakiadis和Blausius流型。温度比参数有助于热边界层厚度的增加,并且均匀的反应速率导致纳米颗粒浓度的降低。针速度和交叉纳米流体速度的相对值是调节粘性阻力和传热速率的最重要因素。增强的魏森伯格参数和雷诺数是提高流场和相关层厚度的主要因素。此外,CCHF的存在可能导致Nusselt的增长。针速度和交叉纳米流体速度的相对值是调节粘性阻力和传热速率的最重要因素。增强的魏森伯格参数和雷诺数是提高流场和相关层厚度的主要因素。此外,CCHF的存在可能导致Nusselt的增长。针速度和交叉纳米流体速度的相对值是调节粘性阻力和传热速率的最重要因素。增强的魏森伯格参数和雷诺数是提高流场和相关层厚度的主要因素。此外,CCHF的存在可能导致Nusselt的增长。

更新日期:2021-04-29
down
wechat
bug