当前位置: X-MOL 学术Case Stud. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Double-diffusive convection between two different phases in a porous infinite-shaped enclosure suspended by nano encapsulated phase change materials
Case Studies in Thermal Engineering ( IF 6.8 ) Pub Date : 2021-04-20 , DOI: 10.1016/j.csite.2021.101016
Abdelraheem M. Aly , Ehab Mahmoud Mohamed , Mohamed F. El-Amin , Noura Alsedais

The paper is dedicated to numerical simulation based on a mesh-free method for a double-diffusive flow between two different materials inside a porous infinite-shaped enclosure suspended by a nano-encapsulated phase change material (NEPCM). Controlling equations have been solved by the Incompressible Smoothed Particle Hydrodynamics (ISPH) method. The first phase is considered a mixture of water and NEPCMs, and the second phase is formed by solid particles. Inside the novel shape of an infinite-shaped enclosure, the solid phase is carrying Th and Ch during the whole simulation and the bottom-wall of an infinite shape is kept at is carrying Tc and Cc. Variations of Darcy parameter, fusion temperature, buoyancy ratio parameter, Stefan parameter, and Lewis number on the phase change zone, materials tracking, temperature, velocity field, and concentration are discussed. The results have shown that the fusion temperature disciplines the phase change zone within a porous infinite-shaped enclosure. The Stefan number adjusts the intensity of the phase change zone. The buoyancy ratio and the Darcy parameters are representing as essential factors in controlling the distribution of solid particles within the nanofluid phase. The ISPH method is validated by comparison with practical and numerical results.



中文翻译:

纳米封装相变材料悬挂的多孔无限形外壳中两个不同相之间的双扩散对流

本文致力于基于无网格方法的数值模拟,该方法用于在纳米无限相变材料(NEPCM)悬置的多孔无限形外壳内的两种不同材料之间进行双扩散流。控制方程式已通过不可压缩的平滑粒子流体动力学(ISPH)方法求解。第一相被认为是水和NEPCM的混合物,第二相是由固体颗粒形成的。在无限形状的外壳的新颖形状内,固相承载着ŤHCH 在整个模拟过程中,无限形状的底壁保持在承载状态 ŤCCC。讨论了达西参数,熔融温度,浮力比参数,斯特凡参数和相变区,材料跟踪,温度,速度场和浓度上的路易斯数的变化。结果表明,熔化温度控制着多孔无限形外壳内的相变区。Stefan数调整相变区的强度。浮力比和达西参数代表了控制纳米流体相中固体颗粒分布的重要因素。通过与实际和数值结果进行比较,对ISPH方法进行了验证。

更新日期:2021-04-27
down
wechat
bug