当前位置: X-MOL 学术Int. J. Microw. Wirel. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transmission lines characteristic impedance versus Q-factor in CMOS technology
International Journal of Microwave and Wireless Technologies ( IF 1.4 ) Pub Date : 2021-04-20 , DOI: 10.1017/s175907872100060x
Johannes J.P. Venter 1 , Anne-Laure Franc 2 , Tinus Stander 3 , Philippe Ferrari 4
Affiliation  

This paper presents a systematic comparison of the relationship between transmission line characteristic impedance and Q-factor of CPW, slow-wave CPW, microstrip, and slow-wave microstrip in the same CMOS back-end-of-line process. It is found that the characteristic impedance for optimal Q-factor depends on the ground-to-ground spacing of the slow-wave transmission line. Although the media are shown to be similar from a mode of propagation point of view, the 60-GHz optimal Q-factor for slow-wave transmission lines is achieved when the characteristic impedance is ≈23 Ω for slow-wave CPWs and ≈43 Ω for slow-wave microstrip lines, with Q-factor increasing for wider ground plane gaps. Moreover, it is shown that slow-wave CPW is found to have a 12% higher optimal Q-factor than slow-wave microstrip for a similar chip area. The data presented here may be used in selecting Z0 values for S-MS and S-CPW passives in CMOS that maximize transmission line Q-factors.

中文翻译:

CMOS 技术中的传输线特性阻抗与 Q 因子

本文系统比较了同一CMOS后端工艺中CPW、慢波CPW、微带线和慢波微带线的传输线特性阻抗与Q因子的关系。发现最佳 Q 因子的特性阻抗取决于慢波传输线的地对地间距。尽管从传播模式的角度来看,介质显示相似,但当慢波 CPW 的特性阻抗为 ≈23 Ω 和 ≈43 Ω 时,可以实现慢波传输线的 60 GHz 最佳 Q 因子对于慢波微带线,随着接地层间隙的增加,Q 因子会增加。此外,研究表明,对于类似的芯片面积,慢波 CPW 的最佳 Q 因子比慢波微带高 12%。Z0CMOS 中 S-MS 和 S-CPW 无源器件的值,可最大限度地提高传输线 Q 因子。
更新日期:2021-04-20
down
wechat
bug