当前位置: X-MOL 学术J. Comput. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Capacitance matching by optimizing the geometry of a ferroelectric HfO 2 -based gate for voltage amplification
Journal of Computational Electronics ( IF 2.1 ) Pub Date : 2021-04-19 , DOI: 10.1007/s10825-021-01701-y
K.-T. Chen , K.-Y. Hsiang , C.-Y. Liao , S.-H. Chang , F.-C. Hsieh , J.-H. Liu , S.-H. Chiang , H. Liang , S. T. Chang , M. H. Lee

The voltage amplification of a ferroelectric layer was studied for advanced complementary metal–oxide–semiconductor (CMOS) applications. To match the capacitance for negative-capacitance field-effect transistors (NC-FETs), a method of adjusting the MOS capacitance is proposed by optimizing the width (W) and height/depth (H) in two types of ferroelectric gate-stack 2D metal-oxide semiconductor capacitor (MOSCAP) structures: a fin-like structure and a trench structure. The capacitance of the semiconductor was modeled to match that of the ferroelectric films to obtain hysteresis-free operation (ΔVT = VT, for –VT,rev ~ 0) and achieve voltage amplification (AV). The optimized conditions are found to be H = 19.3 nm and 24.3 nm to achieve the criterion with AV > 50 for the fin-like and trench structure, respectively. Subsequently, the structure was extended to a three-dimensional (3D) fin-shaped field-effect transistor (FinFET) to evaluate the effects of varying geometrical parameters such as the fin spacing (FS). Tuning FS can not only enhance the on-current but also decrease the subthreshold swing in the off-current region. For the FET, the use of the optimum FS value of 30 nm helps the FinFETs achieve capacitance matching with AV > 30. The subthreshold swing of the NC-FinFET is improved by about 47% for HFinFET/WFinFET ~ 3 and Fs/HFinFET ~ 1.2 as compared with the conventional FinFET. The concept of coupling the polarized Hf-based oxide in NC-FETs that is demonstrated to be feasible herein is thus practicable using current CMOS architectures.



中文翻译:

通过优化基于铁电HfO 2的栅极的几何形状以进行电压放大来实现电容匹配

研究了铁电层的电压放大,以用于先进的互补金属氧化物半导体(CMOS)应用。为了匹配负电容场效应晶体管(NC-FET)的电容,提出了一种通过优化两种铁电栅堆叠2D的宽度(W)和高度/深度(H)来调整MOS电容的方法。金属氧化物半导体电容器(MOSCAP)结构:鳍状结构和沟槽结构。对半导体的电容进行建模以匹配铁电薄膜的电容,以获得无磁滞工作(ΔV T  =  V T,– V T,rev〜0  )并实现电压放大(AV)。发现优化条件为H  = 19.3 nm和24.3 nm,以分别达到 鳍状和沟槽结构的A V > 50的标准。随后,将结构扩展到三维(3D)鳍形场效晶体管(FinFET),以评估不同的几何参数的影响,如翅片间距(˚F小号)。调整F S不仅可以增强导通电流,而且可以减小截止电流区域中的亚阈值摆幅。对于FET,使用30 nm的最佳F S值有助于FinFET实现与A V的电容匹配 > 30. 与传统的FinFET相比,对于H FinFET / W FinFET〜3 和F s / H FinFET〜1.2,NC-FinFET的亚阈值摆幅提高了约47%。因此,使用当前的CMOS体系结构,在本文中被证明是可行的在NC-FET中耦合极化的基于Hf的氧化物的概念是可行的。

更新日期:2021-04-19
down
wechat
bug