当前位置: X-MOL 学术Acta. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Shear-thinning droplet formation inside a microfluidic T-junction under an electric field
Acta Mechanica ( IF 2.7 ) Pub Date : 2021-04-16 , DOI: 10.1007/s00707-021-02965-y
Nasir Amiri , Mohammadmahdi Honarmand , Mahdi Dizani , Ali Moosavi , Siamak Kazemzadeh Hannani

Researchers usually simplify their simulations by considering the Newtonian fluid assumption in microfluidic devices. However, it is essential to study the behavior of real non-Newtonian fluids in such systems. Moreover, using the external electric or magnetic fields in these systems can be very beneficial for manipulating the droplet size. This study considers the simulation of the process of non-Newtonian droplets’ formation under the influence of an external electric field. The novelty of this study is the use of a shear-thinning fluid as the droplet phase in this process, which has been less studied despite its numerous applications. The effects of an external electric field on this process are also investigated. Aqueous carboxymethyl cellulose (CMC) solution with different mass concentrations is selected as the non-Newtonian fluid of the droplet phase. The level set numerical method is used to analyze the formation of droplets in a T-junction. First, the effects of changing the key parameters such as the inlet velocities of phases, the concentration of the droplet phase, and the contact angle and the time of first droplet formation are investigated. The results indicate that as the concentration of the droplet phase increases, the diameter of the droplet decreases. Next, by applying a voltage difference to the system, an electric field is created inside the system. It is found that the stronger the electric field, the larger the droplet size due to the direction of electric forces applied to the interface of the droplet.



中文翻译:

电场作用下微流控T形结内剪切稀疏液滴的形成

研究人员通常通过考虑微流体装置中的牛顿流体假设来简化其模拟。但是,研究此类系统中实际非牛顿流体的行为至关重要。此外,在这些系统中使用外部电场或磁场对于操纵液滴尺寸可能非常有益。本研究考虑了在外部电场影响下非牛顿液滴形成过程的模拟。这项研究的新颖之处在于,在该过程中使用了稀释稀释液作为液滴相,尽管有许多应用,但对其的研究较少。还研究了外部电场对该过程的影响。选择具有不同质量浓度的羧甲基纤维素(CMC)水溶液作为液滴相的非牛顿流体。水平集数值方法用于分析T型结中液滴的形成。首先,研究了改变关键参数(如相的入口速度,液滴相的浓度,接触角和首次形成液滴的时间)的影响。结果表明,随着液滴相的浓度增加,液滴的直径减小。接下来,通过向系统施加电压差,在系统内部创建电场。已经发现,电场越强,由于施加到液滴的界面的方向的力,液滴的尺寸越大。水平集数值方法用于分析T型结中液滴的形成。首先,研究了改变关键参数(如相的入口速度,液滴相的浓度,接触角和首次形成液滴的时间)的影响。结果表明,随着液滴相的浓度增加,液滴的直径减小。接下来,通过向系统施加电压差,在系统内部创建电场。已经发现,电场越强,由于施加到液滴的界面的方向的力,液滴的尺寸越大。水平集数值方法用于分析T型结中液滴的形成。首先,研究了改变关键参数(如相的入口速度,液滴相的浓度,接触角和首次形成液滴的时间)的影响。结果表明,随着液滴相的浓度增加,液滴的直径减小。接下来,通过向系统施加电压差,在系统内部创建电场。已经发现,电场越强,由于施加到液滴的界面的方向的力,液滴的尺寸越大。研究了液滴相的浓度,接触角和首次形成液滴的时间。结果表明,随着液滴相的浓度增加,液滴的直径减小。接下来,通过向系统施加电压差,在系统内部创建电场。已经发现,电场越强,由于施加到液滴的界面的方向的力,液滴的尺寸越大。研究了液滴相的浓度,接触角和首次形成液滴的时间。结果表明,随着液滴相的浓度增加,液滴的直径减小。接下来,通过向系统施加电压差,在系统内部创建电场。已经发现,电场越强,由于施加到液滴的界面的方向的力,液滴的尺寸越大。

更新日期:2021-04-18
down
wechat
bug