当前位置: X-MOL 学术FEMS Microbiol. Ecol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Editorial: microbes vs. metals: harvest and recycle
FEMS Microbiology Ecology ( IF 4.2 ) Pub Date : 2021-04-16 , DOI: 10.1093/femsec/fiab056
Lucian C Staicu 1 , John F Stolz 2
Affiliation  

Microbes and metals are intricately linked in a complex relationship. Many microbial pathways rely on metals for functionality, including enzymatic machinery (co-factors in key enzymes), dissimilatory reduction in energy generation (as alternative electron acceptors in anaerobic respiration) and biomineralization. Some metals share very close physical–chemical properties, thus sensing and incorporating the right metal in enzymes can be a finely-tuned, tightly regulated process (Waldron and Robinson 2009). In environments where essential metals have limited bioavailability microbes have developed high-affinity chelators (metallophores) or are capable of changing the redox conditions at the microscale level to solubilize them. The production of cellular energy using the redox-state transformations of metals/metalloids is an ancient strategy some bacteria and archaea use to sustain growth under nutrient-poor and sometimes extreme conditions (Stolz and Oremland 1999; Gescher and Kappler 2012; Staicu and Barton 2017; Wells et al. 2020). Biominerals are synthesized by microbes to alleviate metal stress and to serve diverse ecological functions (e.g. magnetotactic bacteria synthesize particles of single-domain magnetite de novo, providing them the ability to sense and orient in the ambient geomagnetic field). Metals can be toxic and microbes have developed sophisticated resistance mechanisms to counteract this type of stress. Strategies include ion specific efflux pumps, sequestration in poorly soluble minerals and redox change reactions (Nies 1999; Ni et al. 2015).

中文翻译:

社论:微生物与金属:收获和回收

微生物和金属以复杂的关系错综复杂地联系在一起。许多微生物途径依赖金属来实现功能,包括酶促机械(关键酶中的辅助因子),能量生成的异化还原(作为厌氧呼吸中的替代电子受体)和生物矿化。一些金属具有非常接近的物理化学特性,因此在酶中感测和掺入正确的金属可以是一个微调的,严格调节的过程(Waldron和Robinson 2009)。在必需金属的生物利用度有限的环境中,微生物已开发出高亲和力的螯合剂(金属团簇)或能够在微尺度水平上改变氧化还原条件以使其溶解。。2020)。生物矿物是由微生物合成的,可减轻金属压力并提供多种生态功能(例如,趋磁细菌从头合成单畴磁铁矿的颗粒,使它们能够在周围的地磁场中进行感应和定向)。金属可能是有毒的,微生物已经开发出复杂的抵抗机制来抵消这种压力。策略包括离子专用外排泵,难溶性矿物中的螯合和氧化还原变化反应(Nies 1999; Ni等, 2015)。
更新日期:2021-04-27
down
wechat
bug