当前位置: X-MOL 学术Adv. Appl. Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rhizosphere plant-microbe interactions under water stress
Advances in Applied Microbiology ( IF 5.515 ) Pub Date : 2021-04-16 , DOI: 10.1016/bs.aambs.2021.03.001
Ankita Bhattacharyya 1 , Clint H D Pablo 1 , Olga V Mavrodi 1 , David M Weller 2 , Linda S Thomashow 2 , Dmitri V Mavrodi 1
Affiliation  

Climate change, with its extreme temperature, weather and precipitation patterns, is a major global concern of dryland farmers, who currently meet the challenges of climate change agronomically and with growth of drought-tolerant crops. Plants themselves compensate for water stress by modifying aerial surfaces to control transpiration and altering root hydraulic conductance to increase water uptake. These responses are complemented by metabolic changes involving phytohormone network-mediated activation of stress response pathways, resulting in decreased photosynthetic activity and the accumulation of metabolites to maintain osmotic and redox homeostasis. Phylogenetically diverse microbial communities sustained by plants contribute to host drought tolerance by modulating phytohormone levels in the rhizosphere and producing water-sequestering biofilms. Drylands of the Inland Pacific Northwest, USA, illustrate the interdependence of dryland crops and their associated microbiota. Indigenous Pseudomonas spp. selected there by long-term wheat monoculture suppress root diseases via the production of antibiotics, with soil moisture a critical determinant of the bacterial distribution, dynamics and activity. Those pseudomonads producing phenazine antibiotics on wheat had more abundant rhizosphere biofilms and provided improved tolerance to drought, suggesting a role of the antibiotic in alleviation of drought stress. The transcriptome and metabolome studies suggest the importance of wheat root exudate-derived osmoprotectants for the adaptation of these pseudomonads to the rhizosphere lifestyle and support the idea that the exchange of metabolites between plant roots and microorganisms profoundly affects and shapes the belowground plant microbiome under water stress.



中文翻译:

水分胁迫下的根际植物-微生物相互作用

气候变化及其极端的温度、天气和降水模式是旱地农民关注的主要全球问题,他们目前在农艺学和耐旱作物的生长方面面临气候变化的挑战。植物本身通过改变空中表面以控制蒸腾和改变根部水力传导以增加水分吸收来补偿水分胁迫。这些反应由涉及植物激素网络介导的应激反应途径激活的代谢变化补充,导致光合活性降低和代谢物积累以维持渗透和氧化还原稳态。植物维持的系统发育多样化的微生物群落通过调节根际的植物激素水平和产生水隔离生物膜来促进宿主的耐旱性。美国内陆太平洋西北部的旱地说明了旱地作物及其相关微生物群的相互依存关系。土著假单胞菌属 通过长期的小麦单一栽培选择在那里,通过生产抗生素来抑制根部疾病,土壤水分是细菌分布、动态和活性的关键决定因素。那些在小麦上产生吩嗪抗生素的假单胞菌具有更丰富的根际生物膜,并提高了对干旱的耐受性,这表明抗生素在减轻干旱胁迫中的作用。转录组和代谢组研究表明小麦根系分泌物衍生的渗透保护剂对于这些假单胞菌适应根际生活方式的重要性,并支持植物根部和微生物之间的代谢物交换深刻影响和塑造水分胁迫下的地下植物微生物组的观点.

更新日期:2021-06-14
down
wechat
bug