当前位置: X-MOL 学术Int. Commun. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular dynamics simulation of fluid flow through nanochannels consisting of different superhydrophobic patterns
International Communications in Heat and Mass Transfer ( IF 7 ) Pub Date : 2021-04-15 , DOI: 10.1016/j.icheatmasstransfer.2021.105278
Alireza Shadloo-Jahromi , Masoud Kharati-Koopaee , Omid Bavi

Non-equilibrium molecular dynamics simulation has been carried out to calculate the Darcy-Weisbach friction factor of water flow through the nanochannels. The nanochannel walls were decorated by different arrays of nanoscale protrusion to generate superhydrophobic surfaces. The existence of nanostructures on the channel walls leads to trapping the air inside the nanocavities and, consequently, the system transmutes to a ternary (solid-liquid-gas) system. Our goal is to study how this transmutation affects the hydrodynamics of the fluid flow. The superhydrophobic walls were comprised of longitudinal and transversal nanoridge arrangements and results are obtained for various Reynolds numbers, pillar surface fractions and relative module widths. In this contribution, we presented correlations for the Darcy-Weisbach friction factor of water flow through the nanochannels including different superhydrophobic structures. Results indicated that the relation between friction factor and Reynolds number for the flow through the nanochannels is similar to the laminar flow through channels. Our results demonstrated that the friction factor in nanochannels decreased by employing superhydrophobic structures and also the friction factor in transversal nanoridge arrangement was significantly higher than that of the longitudinal one. We found that by decreasing the percentage of surface fraction and increasing the relative module width, the friction factor decreased.



中文翻译:

流体通过不同的超疏水模式组成的纳米通道的分子动力学模拟

已经进行了非平衡分子动力学模拟,以计算通过纳米通道的水的达西-魏斯巴赫摩擦系数。纳米通道壁由纳米突起的不同阵列装饰,以产生超疏水表面。通道壁上纳米结构的存在导致将空气截留在纳米腔内,因此,该系统转变为三元(固-液-气)系统。我们的目标是研究这种trans变如何影响流体流动的流体动力学。超疏水壁由纵向和横向纳米脊排列组成,并获得了各种雷诺数,柱表面分数和相对组件宽度的结果。在这笔捐款中,我们提出了水流通过包括不同超疏水结构的纳米通道的达西-魏斯巴赫摩擦因数的相关性。结果表明,通过纳米通道的流动的摩擦因数和雷诺数之间的关系类似于通过通道的层流。我们的结果表明,采用超疏水结构降低了纳米通道中的摩擦因子,并且横向纳米脊排列中的摩擦因子也明显高于纵向通道。我们发现,通过减少表面分数的百分比并增加相对模块宽度,摩擦系数会降低。结果表明,通过纳米通道的流动的摩擦因数和雷诺数之间的关系类似于通过通道的层流。我们的结果表明,采用超疏水结构降低了纳米通道中的摩擦因子,并且横向纳米脊排列中的摩擦因子也明显高于纵向通道。我们发现,通过减少表面分数的百分比并增加相对模块宽度,摩擦系数会降低。结果表明,通过纳米通道的流动的摩擦因数和雷诺数之间的关系类似于通过通道的层流。我们的结果表明,采用超疏水结构降低了纳米通道中的摩擦因子,并且横向纳米脊排列中的摩擦因子也明显高于纵向通道。我们发现,通过减少表面分数的百分比并增加相对模块宽度,摩擦系数会降低。我们的结果表明,采用超疏水结构降低了纳米通道中的摩擦因子,并且横向纳米脊排列中的摩擦因子也明显高于纵向通道。我们发现,通过减少表面分数的百分比并增加相对模块宽度,摩擦系数会降低。我们的结果表明,采用超疏水结构降低了纳米通道中的摩擦因子,并且横向纳米脊排列中的摩擦因子也明显高于纵向通道。我们发现,通过减少表面分数的百分比并增加相对模块宽度,摩擦系数会降低。

更新日期:2021-04-16
down
wechat
bug