当前位置: X-MOL 学术Fusion Eng. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assessment of the burning-plasma operational space in ITER by using a control-oriented core-SOL-divertor model
Fusion Engineering and Design ( IF 1.7 ) Pub Date : 2021-04-16 , DOI: 10.1016/j.fusengdes.2021.112516
Vincent Graber , Eugenio Schuster

In future tokamaks, the control of burning plasmas will require careful regulation of the plasma density and temperature. Along with the design of effective burn-control systems, understanding how the fusion power varies in the density-temperature space is vital for the operation of fusion power plants. In this work, the steady-state operational space of ITER is studied using a control-oriented core-plasma model coupled to a two-point model of the scrape-off-layer (SOL) and divertor regions. The two models are coupled through the exchange of input-output parameters. The deuterium and tritium recycling from the wall are output parameters of the SOL-divertor model that are used as input parameters in the core-plasma density balance. Furthermore, the separatrix temperature, which is an output parameter of the SOL-divertor model, is incorporated into the radial core-plasma temperature profiles. Therefore, the temperature-dependent power balance of the plasma core is intimately linked to the SOL-divertor model. Both the power entering the SOL from the core, as determined by the core-plasma power balance, and the separatrix density, as dictated by the core-plasma density balance, are input parameters to the SOL-divertor model. They are control knobs in the SOL-divertor model that can be regulated using the core-plasma actuators: auxiliary power and pellet injection. There are various operational limitations, such as the saturation of the aforementioned actuators, that will prevent ITER from accessing certain high-fusion plasma regimes. The achievable tritium concentration in the fueling lines and the maximum sustainable heat load on the divertor will impose further restrictions. By accounting for these limitations, the ITER operational space is computed based on the coupled core-SOL-divertor model and visualized using Plasma Operation Contour (POPCON) plots that map performance metrics, such as the fusion to auxiliary power ratio, over the density-temperature space. Comparisons are drawn between plasmas with different recycling, confinement, and SOL-divertor conditions.



中文翻译:

使用面向控制的核-SOL-偏滤器模型评估ITER中的燃烧等离子体操作空间

在将来的托卡马克中,控制燃烧的等离子体将需要仔细调节等离子体的密度和温度。在设计有效的燃烧控制系统的同时,了解聚变功率在密度-温度空间中的变化方式对于聚变电站的运行至关重要。在这项工作中,ITER的稳态操作空间是使用面向控制的核心等离子体模型与刮擦层(SOL)和偏滤器区域的两点模型耦合进行研究的。这两个模型通过交换输入输出参数进行耦合。从壁回收的氘和recycling是SOL-偏滤器模型的输出参数,用作核心等离子体密度平衡中的输入参数。此外,分离线温度是SOL-divertor模型的输出参数,径向核-等离子温度曲线中包含了“α”。因此,等离子体核心的温度相关功率平衡与SOL-divertor模型密切相关。由核心-等离子体功率平衡确定的从核心进入SOL的功率,以及由核心-等离子体密度平衡决定的分离密度,都是SOL-divertor模型的输入参数。它们是SOL-divertor模型中的控制旋钮,可以使用核心等离子驱动器进行调节:辅助电源和颗粒注入。存在各种操作限制,例如上述致动器的饱和,这将阻止ITER访问某些高融合等离子体方案。加油管中可达到的tri浓度和分流器上的最大可持续热负荷将施加进一步的限制。考虑到这些限制后,基于耦合的核心-SOL-偏滤器模型计算出ITER的运行空间,并使用等离子运行轮廓(POPCON)图进行可视化,该图将性能指标(如融合功率与辅助功率比)映射到密度-温度空间。在具有不同再循环,限制和SOL-分流器条件的等离子体之间进行比较。

更新日期:2021-04-16
down
wechat
bug