当前位置: X-MOL 学术Opt. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simultaneous measurement of temperature and strain using a single fiber bragg grating on a tilted cantilever beam
Optical Review ( IF 1.2 ) Pub Date : 2021-04-15 , DOI: 10.1007/s10043-021-00660-w
Mohsen Mansoursamaei , Abdollah Malakzadeh

Importance of simultaneous measurement of temperature and strain by fiber Bragg grating (FBG) sensors has led to innovation of several renewing techniques. Most of them are based on two FBGs configurations or one non-uniform FBG implementation. Both temperature and strain changes can result in Bragg wavelength shift in reflected spectrum from a uniform FBG. We propose using full width at half maximum (FWHM) of the reflection spectrum as a cross-sensitivity indicator for simultaneous measurement of temperature and strain using only one FBG. When a non-uniform strain is applied to a sample which a uniform FBG is stuck on it, in addition to the Bragg wavelength, FWHM of the reflection spectrum changes. This FWHM change besides the Bragg wavelength shift is used to obtain simultaneously strain and temperature. When a uniform strain is applied to the sample, we get the help of cantilever beam concept. We place a ramp with an angle of θ, similar to a tilted cantilever beam, on a sample under test and stick a FBG on the ramp. A uniform strain applied to the sample, creates a strain gradient along the cantilever beam and of course along the FBG causing a change in the FWHM of reflection spectrum. This FWHM change besides the Bragg wavelength shift is used to obtain simultaneously strain and temperature. In our simulation results, temperature sensitivity of the FBG is 14.2 pm/℃ for Bragg wavelength with no change in the FWHM and strain sensitivity is 0.453 pm/με for Bragg wavelength and a nonlinear sensitivity according to a quadratic function for FWHM variation.



中文翻译:

使用单个光纤布拉格光栅在倾斜的悬臂梁上同时测量温度和应变

通过光纤布拉格光栅(FBG)传感器同时测量温度和应变的重要性导致了多种更新技术的创新。它们大多数基于两种FBG配置或一种非统一的FBG实现。温度和应变的变化都可能导致均匀FBG的反射光谱中的布拉格波长偏移。我们建议使用反射光谱的半峰全宽(FWHM)作为交叉灵敏度指标,以便仅使用一个FBG即可同时测量温度和应变。当将不均匀的应变施加到粘贴有均匀FBG的样品时,除布拉格波长外,反射光谱的FWHM也会发生变化。除了布拉格波长偏移之外,该FWHM变化还用于同时获取应变和温度。当对样品施加均匀应变时,我们将获得悬臂梁概念的帮助。我们在被测样品上放置一个倾斜角度为θ的坡道(类似于倾斜的悬臂梁),并将FBG粘贴在坡道上。施加到样品上的均匀应变会沿悬臂梁产生应变梯度,当然也会沿FBG产生应变梯度,从而导致反射光谱的FWHM发生变化。除了布拉格波长偏移之外,该FWHM变化还用于同时获取应变和温度。在我们的模拟结果中,对于布拉格波长,FBG的温度灵敏度为14.2 pm /℃,而FWHM不变,而对于布拉格波长,应变灵敏度为0.453 pm /με,根据FWHM变化的二次函数,为非线性灵敏度。类似于倾斜的悬臂梁,在被测样品上并将FBG粘贴在斜坡上。施加到样品上的均匀应变会沿悬臂梁产生应变梯度,当然也会沿FBG产生应变梯度,从而导致反射光谱的FWHM发生变化。除了布拉格波长偏移之外,该FWHM变化还用于同时获取应变和温度。在我们的模拟结果中,对于布拉格波长,FBG的温度灵敏度为14.2 pm /℃,而FWHM不变,而对于布拉格波长,应变灵敏度为0.453 pm /με,根据FWHM变化的二次函数,为非线性灵敏度。类似于倾斜的悬臂梁,在被测样品上并将FBG粘贴在斜坡上。施加到样品上的均匀应变会沿悬臂梁产生应变梯度,当然也会沿FBG产生应变梯度,从而导致反射光谱的FWHM发生变化。除了布拉格波长偏移之外,该FWHM变化还用于同时获取应变和温度。在我们的模拟结果中,对于布拉格波长,FBG的温度灵敏度为14.2 pm /℃,而FWHM不变,而对于布拉格波长,应变灵敏度为0.453 pm /με,根据FWHM变化的二次函数,为非线性灵敏度。沿悬臂梁当然沿FBG会产生应变梯度,从而导致反射光谱的FWHM发生变化。除了布拉格波长偏移之外,该FWHM变化还用于同时获取应变和温度。在我们的模拟结果中,对于布拉格波长,FBG的温度灵敏度为14.2 pm /℃,而FWHM不变,而对于布拉格波长,应变灵敏度为0.453 pm /με,根据FWHM变化的二次函数,为非线性灵敏度。沿悬臂梁当然沿FBG会产生应变梯度,从而导致反射光谱的FWHM发生变化。除了布拉格波长偏移之外,该FWHM变化还用于同时获取应变和温度。在我们的模拟结果中,对于布拉格波长,FBG的温度灵敏度为14.2 pm /℃,而FWHM不变,而对于布拉格波长,应变灵敏度为0.453 pm /με,根据FWHM变化的二次函数,为非线性灵敏度。

更新日期:2021-04-15
down
wechat
bug