当前位置: X-MOL 学术Phys. Rev. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermodynamic bounds on coherent transport in periodically driven conductors
Physical Review X ( IF 12.5 ) Pub Date : 2021-04-14 , DOI: 10.1103/physrevx.11.021013
Elina Potanina , Christian Flindt , Michael Moskalets , Kay Brandner

Periodically driven coherent conductors provide a universal platform for the development of quantum transport devices. Here, we lay down a comprehensive theory to describe the thermodynamics of these systems. We first focus on moderate thermoelectrical biases and low driving frequencies. For this linear response regime, we establish generalized Onsager-Casimir relations and an extended fluctuation-dissipation theorem. Furthermore, we derive a family of thermodynamic bounds proving that any local matter or heat current puts a nontrivial lower limit on the overall dissipation rate of a coherent transport process. These bounds do not depend on system-specific parameters, are robust against dephasing, and involve only experimentally accessible quantities. They thus provide powerful tools to optimize the performance of mesoscopic devices and for thermodynamic inference, as we demonstrate by working out three specific applications. We then show that physically transparent extensions of our bounds hold also for strong biases and high frequencies. These generalized bounds imply a thermodynamic uncertainty relation that fully accounts for quantum effects and periodic driving. Moreover, they lead to a universal and operationally accessible bound on entropy production that can be readily used for thermodynamic inference and device engineering far from equilibrium. Connecting a broad variety of topics that range from thermodynamic geometry over thermodynamic uncertainty relations to quantum engineering, our work provides a unifying thermodynamic theory of coherent transport that can be tested and utilized with current technologies.

中文翻译:

周期性驱动导体中相干传输的热力学界限

周期性驱动的相干导体为量子传输设备的开发提供了一个通用平台。在这里,我们提出了一个综合的理论来描述这些系统的热力学。我们首先关注中等的热电偏置和低驱动频率。对于这种线性响应机制,我们建立了广义的Onsager-Casimir关系和扩展的耗散定理。此外,我们得出了一系列热力学边界,证明了任何局部物质或热流对相干传输过程的总耗散率都施加了不小的下限。这些界限不依赖于系统特定的参数,对于移相具有鲁棒性,并且仅涉及实验可访问的数量。因此,它们为优化介观设备的性能和进行热力学推断提供了强大的工具,正如我们通过制定三个特定的应用程序所展示的那样。然后,我们证明边界的物理透明扩展对于强偏差和高频也成立。这些广义界限暗示了一个热力学不确定性关系,该关系充分考虑了量子效应和周期性驱动。而且,它们导致了熵产生的通用和可操作的界线,可以很容易地将其用于热力学推论和远离平衡的设备工程。连接从热力学几何学到热力学不确定性关系到量子工程的各种主题,
更新日期:2021-04-14
down
wechat
bug