当前位置: X-MOL 学术Int. J. Comput. Methods › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Iterative Approximation of Preconditioning Matrices Through Krylov-Type Solver Iterations
International Journal of Computational Methods ( IF 1.7 ) Pub Date : 2021-04-12 , DOI: 10.1142/s0219876221500274
Noriyuki Kushida 1 , Hiroshi Okuda 1
Affiliation  

Linear equation solvers require considerable computational time in many computer simulation methods, such as the stress analysis using the finite element method (FEM), or the fluid dynamics using an implicit time integration scheme. Because of their favorable nature to modern supercomputers, Krylov-type linear equation solvers have become dominant. Krylov-type solvers are usually used with preconditioners, which accelerate the convergence of Krylov solvers, and therefore developing robust preconditioners draws attention from researchers. The basic idea of preconditioning is to transform the original system to a system which can be solved more easily by using a matrix which resembles the original system but the associated linear system can be solved without any difficulties. In this study, we propose a new methodology of constructing such a matrix by updating the matrix using the information obtained through the Krylov solver computation. More precisely, we employ the limited memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) Hessian matrix update scheme. The proposed scheme is combined with the orthogonal minimum (ORTHOMIN) residual method, which accepts a variable preconditioner. As a result of performance tests, in the best case scenario, (1) with the Matrix Market matrices, our new method combined with Algebraic Multigrid (AMG) shows the successful convergence in 12 cases out of 13 problems, whilst the conventional AMG converged only in four cases and (2) with FEM problems, we obtained 18% acceleration in the rate of converge and 13% in computational time over the AMG preconditioned conjugate gradient (CG) solver. With those results, our newly developed algorithm provides robustness to the conventional preconditioning, whilst the computational speed is superior to conventional ones.

中文翻译:

通过 Krylov 型求解器迭代的预处理矩阵的迭代逼近

线性方程求解器在许多计算机模拟方法中需要相当长的计算时间,例如使用有限元法 (FEM) 的应力分析,或使用隐式时间积分方案的流体动力学。由于对现代超级计算机有利,Krylov 型线性方程求解器已占主导地位。Krylov 型求解器通常与预条件子一起使用,这加速了 Krylov 求解器的收敛,因此开发稳健的预条件子引起了研究人员的关注。预处理的基本思想是将原始系统转换为可以通过使用类似于原始系统的矩阵更容易求解的系统,但相关的线性系统可以毫无困难地求解。在这项研究中,我们提出了一种新的方法,通过使用通过 Krylov 求解器计算获得的信息更新矩阵来构建这样的矩阵。更准确地说,我们采用有限记忆 Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) Hessian 矩阵更新方案。所提出的方案与正交最小 (ORTHOMIN) 残差方法相结合,该方法接受一个变量预处理器。作为性能测试的结果,在最好的情况下,(1) 使用 Matrix Market 矩阵,我们的新方法结合代数多重网格 (AMG) 显示在 13 个问题中的 12 个案例中成功收敛,而传统的 AMG 仅收敛在四种情况下,(2)有有限元问题,我们得到 我们采用有限记忆 Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) Hessian 矩阵更新方案。所提出的方案与正交最小 (ORTHOMIN) 残差方法相结合,该方法接受一个变量预处理器。作为性能测试的结果,在最好的情况下,(1) 使用 Matrix Market 矩阵,我们的新方法结合代数多重网格 (AMG) 显示在 13 个问题中的 12 个案例中成功收敛,而传统的 AMG 仅收敛在四种情况下,(2)有有限元问题,我们得到 我们采用有限记忆 Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) Hessian 矩阵更新方案。所提出的方案与正交最小 (ORTHOMIN) 残差方法相结合,该方法接受一个变量预处理器。作为性能测试的结果,在最好的情况下,(1) 使用 Matrix Market 矩阵,我们的新方法结合代数多重网格 (AMG) 显示在 13 个问题中的 12 个案例中成功收敛,而传统的 AMG 仅收敛在四种情况下,(2)有有限元问题,我们得到18%收敛速度的加速和13%在 AMG 预处理共轭梯度 (CG) 求解器上的计算时间。有了这些结果,我们新开发的算法为传统的预处理提供了鲁棒性,同时计算速度优于传统的。
更新日期:2021-04-12
down
wechat
bug