当前位置: X-MOL 学术Acc. Mater. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Battery Materials Design Essentials
Accounts of Materials Research ( IF 14.6 ) Pub Date : 2021-04-13 , DOI: 10.1021/accountsmr.1c00026
M. Rosa Palacin 1
Affiliation  

Made available for a limited time for personal research and study only License. Figure 1. Schematic illustration of the battery value chain from the material level via the battery cell to the battery system level. In each step, inactive components are added which decrease the practical specific energy (Reproduced with permission from ref (10). Copyright 2017 Springer.) Figure 2. (a) Scheme of a battery cell (top), involving the separator in which the electrolyte is embedded and two electrodes and a conventional tape-casted composite electrode are cast on a metal current collector (bottom) which consists of a mixture of active material, carbon black to enhance electronic conductivity, and binder to enhance adhesion, mechanical strength, and ease of processing. (b) Diagram depicting electrolyte stability window (ESW) and electrochemical potentials of the negative and positive electrode materials (μN and μP, respectively) falling within that window, inspired by ref (9). Figure 3. Potential vs capacity for active materials considered for Li-ion technologies, either commercial or under research, where the yellow area corresponds to moderate operation potentials within the electrolyte stability window. Inspired by ref (23). Figure 4. “Periodic palette” for the design of new electrode material. Elements colored in dark green are preferred. Those colored in red, yellow, violet, or blue are excluded due to high cost, scarcity, toxicity, or radioactivity. Those in pale green exhibit some of such issues to a lower extent and might be still considered despite less attractive options. (Adapted from ref (21). Copyright 2013 American Chemical Society.) Figure 5. Examples or redox active organics and the corresponding mechanisms. (Reproduced with permission from ref (30). Copyright 2020 American Chemical Society.) PBQS: poly(benzoquinonyl sulfide). PDTTA: poly(5,8-dihydro-1H,4H-2,3,6,7-tetrathia-anthracene. ADALS: azobenzene-4,4′-dicarboxylic acid lithium salt. TCNQ: tetracyanoquinodimethane. PPy: polypyrrole. DBMMB: 2,5-di-tert-butyl-1-methoxy-4-[2′-methoxyethoxy]benzene. PT: polythiophene. PTMA: poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate). Figure 6. General overview of the overall battery R&D process from conception to production with indications of estimated timing, staff, and material amounts required for each step according to ref (54). The author declares no competing financial interest. The author declares no competing financial interest.
M. Rosa Palacin is a research professor at the Institut de Ciència de Materials de Barcelona (ICMAB-CSIC, Spain). After her Ph.D. in Chemistry (Universitat Autònoma de Barcelona), she entered battery research in 1996 through a postdoctoral stay with Prof. Jean-Marie Tarascon at LRCS (Amiens, France). Her research career has been fully focused in rechargeable battery materials initially either nickel or lithium based and more recently covering alternative chemistries such as sodium-ion, magnesium, and calcium. Specific emphasis is set in tailoring structure and microstructure of electrode materials to maximize electrochemical performance for traditional technologies and in the development of new materials for emerging chemistries. The author is grateful to ALISTORE-ERI colleagues for helpful discussions and sustained interaction. The Spanish Research Agency is acknowledged for the Severo Ochoa Programme for Centres of Excellence in R&D (CEX2019-000917-S) and AGAUR (Generalitat de Catalunya) for support via grant 2017 SGR 581. This article references 54 other publications.


中文翻译:

电池材料设计要点

限时提供个人研究和学习许可。图 1. 从材料级到电池单元到电池系统级的电池价值链示意图。在每一步中,都添加了非活性成分,这些成分会降低实际比能量(经参考文献 (10) 许可转载。版权所有 2017 Springer。) 图 2. (a) 电池的方案(顶部),涉及隔板,其中嵌入电解质,将两个电极和传统的流延复合电极浇铸在金属集电器(底部)上,金属集电器(底部)由活性材料、增强电子导电性的炭黑和增强粘附性、机械强度的粘合剂和粘合剂的混合物组成。易于处理。NμP,分别)落在该窗口内,灵感来自参考(9)。图 3. 商业或正在研究中的锂离子技术考虑的活性材料的电位与容量,其中黄色区域对应于电解质稳定性窗口内的中等操作电位。受参考文献 (23) 的启发。图 4. 新电极材料设计的“周期调色板”。深绿色元素是首选。由于成本高、稀缺、毒性或放射性,红色、黄色、紫色或蓝色的颜色被排除在外。浅绿色的那些在较低程度上表现出一些这样的问题,尽管选择不太有吸引力,但仍可能被考虑。(改编自参考文献 (21)。版权所有 2013 美国化学学会。)图 5. 实例或氧化还原活性有机物和相应的机制。(经参考文献 (30) 许可转载。版权所有 2020 美国化学学会。)PBQS:聚(苯醌硫醚)。PDTTA:聚(5,8-二氢-1H ,4 H -2,3,6,7-四硫杂蒽。ADALS:偶氮苯-4,4'-二羧酸锂盐。TCNQ:四氰基醌二甲烷。PPy:聚吡咯。DBMMB:2,5-二叔丁基-1-甲氧基-4-[2'-甲氧基乙氧基]苯。PT:聚噻吩。PTMA:聚(2,2,6,6-四甲基哌啶氧基-4-基甲基丙烯酸酯)。图 6. 从概念到生产的整个电池研发过程的总体概述,并根据参考文献 (54) 指示每个步骤所需的估计时间、人员和材料数量。作者声明没有竞争性经济利益。作者声明没有竞争性经济利益。
罗莎·帕拉辛(M. Rosa Palacin)是巴塞罗那材料科学研究院(ICMAB-CSIC,西班牙)的研究教授。在她获得博士学位之后 她在巴塞罗那Autònoma大学的化学专业工作,1996年,她在LRCS(法国亚眠)的Jean-Marie Tarascon教授任博士后,进入电池研究。她的研究生涯完全专注于可充电电池材料,最初是镍基或锂基,最近涉及替代化学物质,如钠离子、镁和钙。特别强调调整电极材料的结构和微观结构,以最大限度地提高传统技术的电化学性能,以及开发用于新兴化学的新材料。作者感谢 ALISTORE-ERI 同事的有益讨论和持续互动。
更新日期:2021-05-28
down
wechat
bug