当前位置: X-MOL 学术IEEE Trans. Aerosp. Electron. Sys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fault-Tolerant Quantized Control for Flexible Air-Breathing Hypersonic Vehicles With Appointed-Time Tracking Performances
IEEE Transactions on Aerospace and Electronic Systems ( IF 4.4 ) Pub Date : 2020-11-25 , DOI: 10.1109/taes.2020.3040519
Xingling Shao , Yi Shi , Wendong Zhang

This article contrives a fault-tolerant quantized control for flexible air-breathing hypersonic vehicles (FAHVs) with appointed-time tracking performances. At first, to online identify the lumped effect of actuator faults, flexible modes, parameter uncertainties as well as external disturbances, a hysteresis quantizer based neural estimator (HQNE) using finite precision state information is proposed, enabling a reduced communication load and computational time with a competitive estimation capability. Utilizing the estimation of HQNE, fault-tolerant quantized control laws equipped with auxiliary systems are established for FAHVs to realize a stable reference tracking result using discrete-time control signals, where auxiliary systems are employed to automatically monitor the impact of input saturation for command regulation. Furthermore, an appointed-time prescribed performance control based on a hyperbolic cosecant function is developed to make the tracking errors of velocity and altitude reach to the pregiven residual sets with a prescribed time in the absence of exact initial system states. The presented controller achieves a preassigned-time tracking performance for FAHVs under actuator faults and input saturation maintaining a decreased communication burden. The ultimately uniformly bounded stability of closed-loop system is proved through Lyapunov stability analysis, while numerical simulations are designed to verify the effectiveness of presented controller.

中文翻译:

具有指定时间跟踪性能的柔性呼吸超音速飞行器的容错量化控制

本文设计了具有指定时间跟踪性能的柔性呼吸式超音速飞行器(FAHV)的容错量化控制。首先,为了在线识别执行器故障,灵活模式,参数不确定性以及外部干扰的集总效应,提出了一种使用有限精度状态信息的基于磁滞量化器的神经估计器(HQNE),从而减少了通信负载和计算时间竞争能力。利用HQNE的估计,为FAHV建立了配备辅助系统的容错量化控制律,以使用离散时间控制信号实现稳定的参考跟踪结果,其中采用辅助系统来自动监视输入饱和的影响以进行命令调节。此外,开发了基于双曲余割函数的指定时间规定性能控制,以使速度和高度的跟踪误差在没有确切的初始系统状态的情况下,在规定的时间内达到给定的残差集。所提出的控制器在执行器故障和输入饱和情况下实现了对FAHV的预定时间跟踪性能,从而降低了通信负担。通过Lyapunov稳定性分析证明了闭环系统的最终一致有界稳定性,同时设计了数值模拟来验证所提出控制器的有效性。
更新日期:2020-11-25
down
wechat
bug