当前位置: X-MOL 学术Precis. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Theoretical and experimental study of the chatter vibration in wet and MQL machining conditions in turning process
Precision Engineering ( IF 3.6 ) Pub Date : 2021-04-13 , DOI: 10.1016/j.precisioneng.2021.04.006
Mohsen Emami , Atiyeh Karimipour

Turning is one of the most commonly used cutting processes for manufacturing components in production engineering. The turning process, in some cases, is accompanied by intense relative movements between tool and workpiece, which is called chatter vibrations. Chatter has been identified as a detrimental problem that adversely impacts surface finish, tool life, process productivity, and dimensional accuracy of the machined part. Cooling/Lubrication in the turning process is normally done for some reasons, including friction and force reduction, temperature decrement, and surface finish improvement. Wet cooling is a traditional cooling/lubrication process that has been used in machining since the past. Besides, a variety of new cooling and lubricating approaches have been developed in recent years, such as the minimum quantity lubrication (MQL), cryogenic cooling, nanolubrication, etc., due to ecological issues. Despite the importance of cooling/lubrication in machining, there is a lack of research on chatter stability in the presence of cutting fluid in cutting processes. In this study, the chatter vibration in turning process for two cooling/lubrication conditions of conventional wet and MQL is investigated. An integrated theoretical model is used to predict both the metal cutting force and the chatter stability lobe diagram (SLD) in turning process. This model involves deriving a math equation for predicting metal cutting force for both wet and MQL conditions using experimental training force data and a Genetic Expression Programming (GEP)-based regression model. Also, the traditional single degree of freedom chatter model is used here for predicting the SLDs. The chatter model is discussed and verified with experimental tests. Then, the experimental results of the tool's acceleration signal, work surface texture, surface roughness, chip shape, and tool wear are presented and compared for wet and MQL conditions. The results of this study show that the cooling/lubrication systems such as wet or MQL have a considerable effect on the SLDs. Also, the predicted results of metal cutting force and SLD for both wet and MQL techniques are in good agreement with the experimental data. Therefore, it is recommended that for each lubrication condition including wet, or MQL, the SLD be determined to achieve higher machinability.



中文翻译:

车削过程中湿态和MQL加工条件下的颤振振动的理论和实验研究

车削是生产工程中制造零件最常用的切削工艺之一。在某些情况下,车削过程伴随着刀具和工件之间剧烈的相对运动,这称为颤动振动。颤振被认为是有害的问题,会对表面光洁度,工具寿命,加工生产率和加工零件的尺寸精度产生不利影响。出于某些原因,通常在车削过程中进行冷却/润滑,包括降低摩擦力和减小力,降低温度并改善表面光洁度。湿式冷却是一种传统的冷却/润滑过程,自从过去以来一直在机械加工中使用。此外,近年来已开发出多种新的冷却和润滑方法,例如最小量润滑(MQL),由于生态问题,需要进行低温冷却,纳米润滑等。尽管冷却/润滑在机械加工中很重要,但在切削过程中存在切削液的情况下,对颤振稳定性的研究仍缺乏。在这项研究中,研究了在常规湿法和MQL两种冷却/润滑条件下车削过程中的颤振。使用集成的理论模型来预测车削过程中的金属切削力和颤振稳定性波瓣图(SLD)。该模型涉及使用实验训练力数据和基于基因表达编程(GEP)的回归模型来推导用于预测在潮湿和MQL条件下的金属切削力的数学方程式。而且,传统的单自由度颤振模型在这里用于预测SLD。对颤振模型进行了讨论,并通过实验测试进行了验证。然后,给出了工具的加速度信号,工作表面纹理,表面粗糙度,切屑形状和工具磨损的实验结果,并在潮湿和MQL条件下进行了比较。这项研究的结果表明,诸如湿式或MQL之类的冷却/润滑系统对SLD具有相当大的影响。同样,湿法和MQL技术的金属切削力和SLD的预测结果也与实验数据非常吻合。因此,建议针对包括湿式或MQL在内的每种润滑条件,确定SLD以实现更高的切削性。提出并比较了潮湿和MQL条件下的刀具磨损。这项研究的结果表明,诸如湿式或MQL之类的冷却/润滑系统对SLD具有相当大的影响。同样,湿法和MQL技术的金属切削力和SLD的预测结果也与实验数据非常吻合。因此,建议针对包括湿式或MQL在内的每种润滑条件,确定SLD以实现更高的切削性。提出并比较了潮湿和MQL条件下的刀具磨损。这项研究的结果表明,诸如湿式或MQL之类的冷却/润滑系统对SLD具有相当大的影响。同样,湿法和MQL技术的金属切削力和SLD的预测结果也与实验数据非常吻合。因此,建议针对包括湿式或MQL在内的每种润滑条件,确定SLD以实现更高的切削性。

更新日期:2021-04-22
down
wechat
bug