当前位置: X-MOL 学术Biorheology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Visualizing and exploring nonlinear behavior, timescales, and mechanical signatures of human blood
Biorheology ( IF 1.1 ) Pub Date : 2021-04-08 , DOI: 10.3233/bir-201007
Matthew Armstrong 1 , Erin Milner 1 , Chi Nguyen 1 , Trevor Corrigan 1 , Yu-Fan Lee 2
Affiliation  

Human blood is an excellent example of a thixo-elasto-visco-plastic (TEVP), shear-thinning fluid, with an apparent yield stress. We demonstrate a series of unique strain-controlled experiments to elucidate the evolving elastic and viscous properties of human blood and show the associated unique viscoelastic and thixotropic signatures. The experimental techniques and procedures outlined here, and the robust mechanical analysis framework offers a window into the complex nonlinearity of the relationship between the microstructure and mechanical properties of human blood. Rather than using the traditional discrete Fourier transform to analyze the data, two contemporary methods, the MITlaos, Chebychev analysis technique, and the other sequence of physical processes (SPP), are applied to these oscillatory tests. These methods are advantageous because they both allow for the analysis of large amplitude oscillatory shear flow. These frameworks will highlight how the blood undergoes thickening-thinning and hardening-softening cycles that are directly related to microstructures during large amplitude oscillatory shear flow. We show these results with a series of Cole-Cole and Lissajous-Bowditch plots, then compare to an aqueous solution of xanthan gum and glycerol. The analysis presented here is independent of a specific TEVP rheological model. (We acknowledge that the protein film on surface of blood air interface issue may exist; based on literature we estimate this to contribute no more than +0.375 mPa s to viscosity at, or 0.0375 Pa to the stress measurement at shear rates below 100 s−1.) BACKGROUND:Human blood is a thixo-elasto-visco-plastic (TEVP) material that exhibits unique fluctuations in mechanical properties based on physiology, and shear rate. We demonstrate new visual tools to help visualize and characterize these varied mechanical properties. OBJECTIVE:Our objective is to demonstrate contemporary visual and numerical tools to help visualize and characterize the varied mechanical properties of human blood. METHODS:Using the ARESG2 strain-controlled rheometer with double wall couette geometry and eight human blood donors, with lab test results, elastic and viscous properties are investigated using Series of Physical Processes (SPP) and MITLaos to both analyze and visualize the mechanical signatures of the blood. RESULTS:Variations of mechanical properties are shown via SPP generated Cole-Cole plots and MITLaos analysis. These variations are a function of physiological properties of blood on the day of the blood draw based on hematocrit, fibrinogen, cholesterol, triglycerides, and a host of other proteins and constituents. Each rheological experiment with blood is replicated with an analogous experiments with 0.04 wt% xanthan in glycerol, and water to demonstrate that the mechanical properties of the human blood, and its rheological signatures are unique to human blood. CONCLUSIONS:Human blood is proven to be a TEVP material, as shown on a series of Cole-Cole plots for eight different donors, at two different frequency and strain amplitude combinations. Variations in Cole-Cole plots for each donor are shown. MITLaos average mechanical properties are calculated and shown. Aggregated elastic and viscous projections and a Cole-Cole plot is shown for Donors 1–8, along with 95% confidence interval.

中文翻译:

可视化和探索人类血液的非线性行为、时间尺度和机械特征

人血是触变-弹-粘-塑性 (TEVP)、剪切稀化流体的一个很好的例子,具有明显的屈服应力。我们展示了一系列独特的应变控制实验,以阐明人类血液不断变化的弹性和粘性特性,并展示相关的独特粘弹性和触变性特征。此处概述的实验技术和程序,以及强大的力学分析框架为了解人体血液微观结构与机械特性之间关系的复杂非线性提供了一个窗口。不是使用传统的离散傅立叶变换来分析数据,而是将两种现代方法、MITlaos、切比雪夫分析技术和其他物理过程序列 (SPP) 应用于这些振荡测试。这些方法是有利的,因为它们都允许分析大振幅振荡剪切流。这些框架将突出显示血液如何在大幅度振荡剪切流期间经历与微观结构直接相关的增稠-稀化和硬化-软化循环。我们使用一系列 Cole-Cole 和 Lissajous-Bowditch 图显示这些结果,然后与黄原胶和甘油的水溶液进行比较。此处介绍的分析独立于特定的 TEVP 流变模型。(我们承认血液空气界面表面的蛋白质膜可能存在问题;根据文献,我们估计这对粘度的贡献不超过 +0.375 mPa s,或在低于 100 s 的剪切速率下对应力测量的贡献不超过 0.0375 Pa。 1.) 背景:人血是一种触变-弹-粘-塑性 (TEVP) 材料,根据生理学和剪切速率表现出独特的机械性能波动。我们展示了新的可视化工具,以帮助可视化和表征这些不同的机械特性。目标:我们的目标是展示当代视觉和数字工具,以帮助可视化和表征人类血液的各种机械特性。方法:使用 ARESG2 应变控制流变仪,双壁 couette 几何形状和八名人类献血者,根据实验室测试结果,使用系列物理过程 (SPP) 和 MITLaos 研究弹性和粘性特性,以分析和可视化血液。结果:通过 SPP 生成的 Cole-Cole 图和 MITLaos 分析显示了机械性能的变化。这些变化是基于血细胞比容、纤维蛋白原、胆固醇、甘油三酯和许多其他蛋白质和成分的抽血当天血液的生理特性的函数。每个血液流变学实验都用甘油和水中的 0.04 wt% 黄原胶和水的类似实验进行复制,以证明人类血液的机械特性及其流变学特征是人类血液所独有的。结论:人类血液被证明是一种 TEVP 材料,如一系列 Cole-Cole 图所示,针对八个不同的供体,采用两种不同的频率和应变幅度组合。显示了每个供体的 Cole-Cole 图的变化。MITLaos 平均机械性能被计算和显示。显示了供体 1-8 的聚合弹性和粘性投影以及 Cole-Cole 图,
更新日期:2021-04-13
down
wechat
bug