当前位置: X-MOL 学术Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Suction effects on transitional bubbles
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ( IF 1.1 ) Pub Date : 2021-04-13 , DOI: 10.1177/09544100211008672
Redha A. Wahidi 1 , Semih M. Olçmen 1
Affiliation  

The effects of suction on the structure of a transitional bubble forming on a low-Reynolds-number airfoil are examined using the Reynolds-averaged Navier–Stokes and k–kL–ω transition model. The suction effects on the laminar and turbulent portions of the separation bubble and the locations of the main points in the separation bubble are discussed in relation to the transition process of the bubble. A single suction distribution located in the region of the baseline transitional bubble is used with two suction rates. One suction rate is sufficiently strong to eliminate the bubble from its original location and a lower suction rate that is only sufficient to create shallower bubbles. Eliminating the bubble from its original location maintains a laminar boundary layer downstream of the baseline transition location until a shallower separation bubble forms near the trailing edge. The lower suction rate shortens the separation bubble and reduces its height while approximately maintaining its original location. Analyzing the lengths of different portions of the bubble suggests that suction affects the instability growth rate and the nonlinear interactions in the separated shear layer. The lower suction rate shortens the distance between the separation and transition onset suggesting a higher growth rate of the inviscid instability. The higher suction rate, on the other hand, increases the distance between the separation and transition onset indicating a stabilizing effect by slowing down the growth rate of the inviscid instability. However, the percentage of distance between transition and separation to the total length is only slightly affected by the suction and the angle of attack.



中文翻译:

吸气对过渡气泡的影响

使用雷诺平均Navier–Stokes和k–k L检查吸力对低雷诺数机翼上形成的过渡气泡结构的影响–ω过渡模型。关于气泡的过渡过程,讨论了对分离气泡的层流和湍流部分的抽吸作用以及分离气泡中主要点的位置。使用位于基线过渡气泡区域内的单个吸力分布,并具有两个吸力速率。一种抽吸速率足够强以从其原始位置消除气泡,而较低的抽吸速率仅足以产生较浅的气泡。从原始位置消除气泡会在基线过渡位置的下游保持层流边界层,直到在后缘附近形成较浅的分离气泡为止。较低的抽吸速率可缩短分离气泡并降低其高度,同时大致保持其原始位置。分析气泡不同部分的长度表明,吸力会影响不稳定性的增长速度以及分离剪切层中的非线性相互作用。较低的抽吸速率缩短了分离和过渡起始之间的距离,表明无粘性不稳定性的生长速率较高。另一方面,较高的抽吸速率会增加分离和过渡开始之间的距离,从而通过减慢无粘性不稳定性的增长速率来表明具有稳定作用。但是,过渡和分离之间的距离占总长度的百分比仅受吸力和迎角的影响很小。较低的抽吸速率缩短了分离和过渡起始之间的距离,表明无粘性不稳定性的生长速率较高。另一方面,较高的抽吸速率会增加分离和过渡开始之间的距离,从而通过减慢无粘性不稳定性的增长速率来表明具有稳定作用。但是,过渡和分离之间的距离占总长度的百分比仅受吸力和迎角的影响很小。较低的抽吸速率缩短了分离和过渡起始之间的距离,表明无粘性不稳定性的生长速率较高。另一方面,较高的抽吸速率会增加分离和过渡开始之间的距离,从而通过减慢无粘性不稳定性的增长速率来表明具有稳定作用。但是,过渡和分离之间的距离占总长度的百分比仅受吸力和迎角的影响很小。

更新日期:2021-04-13
down
wechat
bug