当前位置: X-MOL 学术Bull. Volcanol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The mechanical behaviour and failure modes of volcanic rocks: a review
Bulletin of Volcanology ( IF 3.5 ) Pub Date : 2021-04-13 , DOI: 10.1007/s00445-021-01447-2
Michael J. Heap , Marie E.S. Violay

The microstructure and mineralogy of volcanic rocks is varied and complex, and their mechanical behaviour is similarly varied and complex. This review summarises recent developments in our understanding of the mechanical behaviour and failure modes of volcanic rocks. Compiled data show that, although porosity exerts a first-order influence on the uniaxial compressive strength of volcanic rocks, parameters such as the partitioning of the void space (pores and microcracks), pore and crystal size and shape, and alteration also play a role. The presence of water, strain rate, and temperature can also influence uniaxial compressive strength. We also discuss the merits of micromechanical models in understanding the mechanical behaviour of volcanic rocks (which includes a review of the available fracture toughness data). Compiled data show that the effective pressure required for the onset of hydrostatic inelastic compaction in volcanic rocks decreases as a function of increasing porosity, and represents the pressure required for cataclastic pore collapse. Differences between brittle and ductile mechanical behaviour (stress-strain curves and the evolution of porosity and acoustic emission activity) from triaxial deformation experiments are outlined. Brittle behaviour is typically characterised by shear fracture formation, and an increase in porosity and permeability. Ductile deformation can either be distributed (cataclastic pore collapse) or localised (compaction bands) and is characterised by a decrease in porosity and permeability. The available data show that tuffs deform by delocalised cataclasis and extrusive volcanic rocks develop compaction bands (planes of collapsed pores connected by microcracks). Brittle failure envelopes and compactive yield caps for volcanic rocks are compared, highlighting that porosity exerts a first-order control on the stresses required for the brittle-ductile transition and shear-enhanced compaction. However, these data cannot be explained by porosity alone and other microstructural parameters, such as pore size, must also play a role. Compactive yield caps for tuffs are elliptical, similar to data for sedimentary rocks, but are linear for extrusive volcanic rocks. Linear yield caps are considered to be a result of a high pre-existing microcrack density and/or a heterogeneous distribution of porosity. However, it is still unclear, with the available data, why compaction bands develop in some volcanic rocks but not others, which microstructural attributes influence the stresses required for the brittle-ductile transition and shear-enhanced compaction, and why the compactive yield caps of extrusive volcanic rocks are linear. We also review the Young’s modulus, tensile strength, and frictional properties of volcanic rocks. Finally, we review how laboratory data have and can be used to improve our understanding of volcanic systems and highlight directions for future research. A deep understanding of the mechanical behaviour and failure modes of volcanic rock can help refine and develop tools to routinely monitor the hazards posed by active volcanoes.



中文翻译:

火山岩的力学行为和破坏模式:综述

火山岩的微观结构和矿物学是多样而复杂的,其力学行为也同样是多样而复杂的。这篇综述总结了我们对火山岩力学行为和破坏模式的理解的最新进展。汇编数据表明,尽管孔隙度对火山岩的单轴抗压强度产生了一级影响,但孔隙空间(孔隙和微裂纹)的划分,孔隙和晶体的尺寸和形状以及蚀变等参数也起着作用。 。水,应变率和温度的存在也会影响单轴抗压强度。我们还将讨论微力学模型在理解火山岩力学行为方面的优点(包括对可用的断裂韧性数据的回顾)。汇编的数据表明,火山岩中发生静水非弹性压实所需的有效压力随孔隙度的增加而降低,并且代表了碎裂孔隙塌陷所需的压力。概述了三轴变形实验中的脆性和延性力学行为(应力-应变曲线以及孔隙率和声发射活动的演化)之间的差异。脆性通常以剪切断裂的形成以及孔隙率和渗透率的增加为特征。延性变形可以是分布的(碎裂的孔隙塌陷)或局部的(压实带),其特征是孔隙率和渗透率降低。现有数据表明凝灰岩由于局部化的催化裂化而变形,而火山喷发岩石形成压实带(由微裂纹连接的塌陷孔隙平面)。比较了火山岩的脆性破坏包络和压实屈服顶盖,强调了孔隙度对脆性-延性转变和剪切增强压实所需的应力进行了一级控制。但是,这些数据不能仅通过孔隙率来解释,其他微结构参数(例如孔径)也必须发挥作用。凝灰岩的压实屈服顶盖是椭圆形的,类似于沉积岩的数据,但对于挤压火山岩是线性的。线性屈服强度上限被认为是由于预先存在的微裂纹密度高和/或孔隙度分布不均造成的。但是,目前还不清楚,利用现有数据,为什么在某些火山岩中会形成压实带,而在其他火山岩中却不形成压实带,这些微观结构属性会影响脆性-延性转变和剪切增强压实所需的应力,以及挤压性火山岩的压实屈服极限是线性的。我们还回顾了火山岩的杨氏模量,抗张强度和摩擦性能。最后,我们回顾了实验室数据的使用方式,以及如何使用这些数据来增进我们对火山系统的理解,并突出了未来研究的方向。对火山岩的力学行为和破坏模式的深入了解可以帮助改进和开发工具,以定期监视活动火山造成的危害。哪些微观结构属性会影响脆性-延性转变和剪切增强的压实所需的应力,以及为何挤压火山岩的压实屈服极限呈线性。我们还回顾了火山岩的杨氏模量,抗张强度和摩擦性能。最后,我们回顾了实验室数据如何具有并可以用来增进我们对火山系统的理解,并突出了未来研究的方向。对火山岩的力学行为和破坏模式的深入了解可以帮助改进和开发工具,以定期监视活动火山造成的危害。哪些微观结构属性会影响脆性-延性转变和剪切增强的压实所需的应力,以及为何挤压火山岩的压实屈服极限呈线性。我们还回顾了火山岩的杨氏模量,抗张强度和摩擦性能。最后,我们回顾了实验室数据的使用方式,以及如何使用这些数据来增进我们对火山系统的理解,并突出了未来研究的方向。对火山岩的力学行为和破坏模式的深入了解可以帮助改进和开发工具,以定期监视活动火山造成的危害。和火山岩的摩擦特性。最后,我们回顾了实验室数据的使用方式,以及如何使用这些数据来增进我们对火山系统的理解,并突出了未来研究的方向。对火山岩的力学行为和破坏模式的深入了解可以帮助改进和开发工具,以定期监视活动火山造成的危害。和火山岩的摩擦特性。最后,我们回顾了实验室数据的使用方式,以及如何使用这些数据来增进我们对火山系统的理解,并突出了未来研究的方向。对火山岩的力学行为和破坏模式的深入了解可以帮助改进和开发工具,以定期监视活动火山造成的危害。

更新日期:2021-04-13
down
wechat
bug