当前位置: X-MOL 学术Microbiology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the Possibility of Aerobic Methane Production by Pelagic Microbial Communities of the Laptev Sea
Microbiology ( IF 1.5 ) Pub Date : 2021-04-12 , DOI: 10.1134/s0026261721020119
O. S. Samylina , I. I. Rusanov , I. Yu. Tarnovetskii , E. V. Yakushev , A. A. Grinko , E. E. Zakharova , A. Yu. Merkel , T. A. Kanapatskiy , I. P. Semiletov , N. V. Pimenov

Abstract

The taxonomic diversity and metabolic activity of microbial communities in the Laptev Sea water column above and outside the methane seep field were studied. The concentrations of dissolved methane in the water column at both stations were comparable until the depth of the pycnocline (25 m). At this depth, local methane maxima were recorded, with the highest concentration (116 nM CH4) found at the station outside the methane seep field. Results of the 16S rRNA gene sequencing and measurements of the rates of hydrogenotrophic methanogenesis indicated the absence of methanogenesis caused by the methanogenic archaea in the pycnocline and in other horizons of the water column. The 16S rRNA-based analysis of microbial phylogenetic diversity, as well as radiotracer analysis of the rates of primary production (PP), dark CO2 assimilation (DCA), and methane oxidation (MO), indicated the functioning of a diverse community of pelagic microorganisms capable of transforming a wide range of organic compounds under oligotrophic conditions of the Arctic basin. Hydrochemical prerequisites and possible microbial agents of aerobic methane production via demethylation of methylphosphonate and decomposition of dimethylsulfoniopropionate using dissolved organic matter synthesized in the PP, DCA, and MO processes are discussed.



中文翻译:

拉普捷夫海中上层微生物群落生产有氧甲烷的可能性

摘要

研究了甲烷渗漏场以上和外部的拉普捷夫海水柱中微生物群落的分类学多样性和代谢活性。直到比浓可可碱的深度(25 m)为止,在两个站的水柱中溶解的甲烷浓度是可比的。在此深度处,记录了最高甲烷浓度(116 nM CH 4)的局部甲烷最大值)位于甲烷渗漏场以外的站点。16S rRNA基因测序的结果和氢营养型甲烷生成速率的测量结果表明,在比考克林和水柱的其他视线中没有由甲烷化古生菌引起的甲烷生成。基于16S rRNA的微生物系统发育多样性分析,以及初级生产量(PP),深色CO 2速率的放射性示踪剂分析同化作用(DCA)和甲烷氧化作用(MO)表明,在北极盆地的贫营养条件下,多种中上层微生物能够转化多种有机化合物。讨论了通过在PP,DCA和MO过程中合成的溶解有机物,通过膦酸甲酯的去甲基化和分解丙酸二甲酯的方法,产生好氧甲烷的水化学先决条件和可能的微生物剂。

更新日期:2021-04-12
down
wechat
bug