当前位置: X-MOL 学术Bull. Eng. Geol. Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stress-dependence of the permeability, porosity, and compressibility in fractured porous media regarding fracturing condition
Bulletin of Engineering Geology and the Environment ( IF 4.2 ) Pub Date : 2021-04-11 , DOI: 10.1007/s10064-021-02215-4
Parisa Bagherzadeh , Kamran Goshtasbi , Ezatallah Kazemzadeh , Mojtaba Kashef , Hessam Aloki Bakhtiari

Fractured reservoirs are important hydrocarbon resources. However, the production of hydrocarbon makes fractures to be sealed which in turn decreases the production rate. A better understanding of permeability, porosity, and compressibility of fractures would be useful in optimizing the production rate. This research paper explored stress-dependent permeability, porosity, and compressibility of fractured porous media, both experimentally and numerically. The laboratory results are used to calibrate numerical models. With this regard, the roles of fracturing parameters such as orientation, opening, fracture density, persistency, and the intersection of fractures on hydro-mechanical parameters of the fractured sample are analyzed individually. The results indicate that stress sensitivity of permeability and compressibility is more in fractured porous media than in non-fractured ones. The results gained also showed that samples with open fractures and no filling materials, dominant vertical fractures, and high fracture density have the most stress dependency of permeability and compressibility, while in high fracture densities, the fracture and matrix changes are close to each other. The intersection of joints and not persisted fractures act as obstacles. This causes the fluid to be trapped in porous media that affect reservoir recovery and increase financial losses. Finally, an analytical relationship is developed to calculate the matrix compressibility



中文翻译:

压裂条件下压裂多孔介质中渗透率,孔隙率和可压缩性的应力依赖性

裂缝性储层是重要的碳氢化合物资源。然而,碳氢化合物的产生使裂缝被密封,这反过来又降低了生产率。更好地理解裂缝的渗透率,孔隙率和可压缩性将有助于优化生产率。该研究论文通过实验和数值方法探索了应力相关的渗透率,孔隙率和压裂多孔介质的可压缩性。实验室结果用于校准数值模型。考虑到这一点,分别分析了压裂参数(例如方向,开度,裂缝密度,持久性和裂缝交点对裂缝样本的流体力学参数)的作用。结果表明,在压裂的多孔介质中,渗透率和可压缩性的应力敏感性比未压裂的介质高。所得结果还表明,具有开放裂缝且没有填充材料,占优势的垂直裂缝和高裂缝密度的样品具有最大的渗透率和可压缩性应力相关性,而在高裂缝密度中,裂缝和基质变化彼此接近。关节的交叉点和未持久的骨折都成为障碍。这导致流体被困在多孔介质中,这影响了储层的采收率并增加了经济损失。最后,建立解析关系以计算矩阵可压缩性 显性垂直裂缝和高裂缝密度对渗透率和可压缩性具有最大的应力依赖性,而在高裂缝密度下,裂缝和基质变化彼此接近。关节的交叉点和未持久的骨折都成为障碍。这导致流体被困在多孔介质中,这影响了储层的采收率并增加了经济损失。最后,建立解析关系以计算矩阵可压缩性 显性垂直裂缝和高裂缝密度对渗透率和可压缩性具有最大的应力依赖性,而在高裂缝密度下,裂缝和基质变化彼此接近。关节的交叉点和未持久的骨折都成为障碍。这导致流体被困在多孔介质中,这影响了储层的采收率并增加了经济损失。最后,建立解析关系以计算矩阵可压缩性 这导致流体被困在多孔介质中,这影响了储层的采收率并增加了经济损失。最后,建立解析关系以计算矩阵可压缩性 这导致流体被困在多孔介质中,这影响了储层的采收率并增加了经济损失。最后,建立解析关系以计算矩阵可压缩性

更新日期:2021-04-11
down
wechat
bug