当前位置: X-MOL 学术J. Environ. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal, mechanical, rheological, electrical and electromagnetic interference shielding performance of polypropylene/magnetic carbon nanocomposites
Journal of Environmental Chemical Engineering ( IF 7.7 ) Pub Date : 2021-04-09 , DOI: 10.1016/j.jece.2021.105447
M.T.H. Siddiqui , Humair Ahmed Baloch , Sabzoi Nizamuddin , Sima Kashi , Faisal Amri Tanjung , Nazia Hossain , Shaukat Ali Mazari , N.M. Mubarak , G.J. Griffin , Madapusi Srinivasan

Novel magnetic bio-nanocomposites were fabricated using polypropylene (PP) as polymer matrix and graphene supported magnetic carbon nanocomposite (MCNC, produced by solvothermal carbonization co-precipitation route integrating low-cost graphene, renewable biomass and iron oxide nanoparticles) serving as filler by incorporating nano-fillers of loading 5%, 10% and 15% with PP using a convenient and time efficient route melt processing. Utilizing waste biomass as integral part of MCNC offers cost effective solution for hybrid nanocomposite synthesis and its application in advance field as electromagnetic interference (EMI) shielding material. The study provides comprehensive analysis for its upgradation in rheological properties that have exclusive impact on its final application. Furthermore, the behaviour for thermal, structural, mechanical, chemical, magnetic, and electrical features using various characterization techniques. Field emission scanning electron micrographs revealed good dispersion of MCNC in PP matrix and formation of network for 15% loading of the filler facilitated 800% higher shielding effectiveness as compared to that of neat PP. It was revealed that functionalization with graphene supported magnetic nanocomposite and polymer matrix have improved the overall conductivity for the composites. Rheological studies indicated the upgradation in viscoelastic properties as solid like behaviour was seen with the increment of filler concentration. X-ray diffractometer demonstrated that MCNC had a substantial impact on the crystallinity of nanocomposite that is validated with modulated differential scanning calorimetry analysis.



中文翻译:

聚丙烯/磁性碳纳米复合材料的热,机械,流变,电气和电磁干扰屏蔽性能

以聚丙烯(PP)为聚合物基体,以石墨烯为载体的磁性碳纳米复合材料(MCNC,通过溶剂热碳化共沉淀法生产,结合了低成本的石墨烯,可再生生物质和氧化铁纳米粒子)作为填料,制备了新型磁性生物纳米复合材料。使用便捷,高效的路线熔体加工工艺,以5%,10%和15%的PP含量填充纳米填料。利用废弃生物质作为MC​​NC的组成部分,可为混合纳米复合材料的合成及其在电磁干扰(EMI)屏蔽材料领域中的应用提供经济高效的解决方案。该研究对其流变性能的提升提供了全面的分析,而流变特性对其最终应用具有排他性影响。此外,热,结构,机械,使用各种表征技术的化学,磁性和电气特征。场发射扫描电子显微照片显示,MCNC在PP基质中具有良好的分散性,并且15%的填充剂形成网络,与纯PP相比,屏蔽效率提高了800%。结果表明,石墨烯负载的磁性纳米复合材料和聚合物基体的功能化改善了复合材料的整体导电性。流变学研究表明,随着填料浓度的增加,出现了类似固体的行为,从而使粘弹性性能得到了提高。X射线衍射仪表明,MCNC对纳米复合材料的结晶度有重大影响,这已通过调制差示扫描量热分析进行了验证。和使用各种表征技术的电气特征。场发射扫描电子显微照片显示,MCNC在PP基质中具有良好的分散性,并且15%的填充剂形成网络,与纯PP相比,屏蔽效率提高了800%。结果表明,石墨烯负载的磁性纳米复合材料和聚合物基体的功能化改善了复合材料的整体导电性。流变学研究表明,随着填料浓度的增加,出现了类似固体的行为,从而使粘弹性性能得到了提高。X射线衍射仪表明,MCNC对纳米复合材料的结晶度有重大影响,这已通过调制差示扫描量热分析进行了验证。和使用各种表征技术的电气特征。场发射扫描电子显微照片显示,MCNC在PP基质中具有良好的分散性,并且15%的填充剂形成网络,与纯PP相比,屏蔽效率提高了800%。结果表明,石墨烯负载的磁性纳米复合材料和聚合物基体的功能化改善了复合材料的整体导电性。流变学研究表明,随着填料浓度的增加,出现了类似固体的行为,从而使粘弹性性能得到了提高。X射线衍射仪表明,MCNC对纳米复合材料的结晶度有重大影响,这已通过调制差示扫描量热分析进行了验证。场发射扫描电子显微照片显示,MCNC在PP基质中具有良好的分散性,并且15%的填充剂形成网络,与纯PP相比,屏蔽效率提高了800%。结果表明,石墨烯负载的磁性纳米复合材料和聚合物基体的功能化改善了复合材料的整体导电性。流变学研究表明,随着填料浓度的增加,出现了类似固体的行为,从而使粘弹性性能得到了提高。X射线衍射仪表明,MCNC对纳米复合材料的结晶度有重大影响,这已通过调制差示扫描量热分析进行了验证。场发射扫描电子显微照片显示,MCNC在PP基质中具有良好的分散性,并且15%的填充剂形成网络,与纯PP相比,屏蔽效率提高了800%。结果表明,石墨烯负载的磁性纳米复合材料和聚合物基体的功能化改善了复合材料的整体导电性。流变学研究表明,随着填料浓度的增加,出现了类似固体的行为,从而使粘弹性性能得到了提高。X射线衍射仪表明,MCNC对纳米复合材料的结晶度有重大影响,这已通过调制差示扫描量热分析进行了验证。

更新日期:2021-04-09
down
wechat
bug