当前位置: X-MOL 学术Adv. Phys. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Physics and technology of Terahertz quantum cascade lasers
Advances in Physics: X ( IF 6 ) Pub Date : 2021-04-09 , DOI: 10.1080/23746149.2021.1893809
Miriam S. Vitiello 1 , Alessandro Tredicucci 1, 2
Affiliation  

ABSTRACT

Even though already in the seventies, right after the invention of the quantum cascade laser (QCL) concept, it was argued that this device could be operated in the THz (far-infrared) range of the electromagnetic spectrum, it was only in 2002 that the first working THz QCL was demonstrated. Soon afterwards, the progress was very rapid; in the space of 2–3 years, operating temperatures were raised, single-mode DFB devices were produced, applications as local oscillators in heterodyne transceivers were implemented, frequency coverage was extended to the whole 1–5 THz region. In the last few years, technological advancement has continued to improve performances: the maximum operating temperature has now reached about 250 K and about 1 W peak output power has been demonstrated. Several beam engineering techniques have been implemented, with the scope of enhancing spectral purity, improving beam quality and achieving vertical emission. In parallel, various approaches have been devised that allow frequency tunability of the emitted light, with the most efficient schemes achieving a tuning range of about 10% of the central emission frequency. Even the generation of frequency combs directly from THz QCLs has been obtained, by employing dispersion compensated waveguides and an intrinsic material non-linearity. This manuscript reviews the physics underlying the operation of THz QCLs, the technology developed to advance laser performances, and highlights the latest most promising progresses in this fascinating area of opto-electronics.



中文翻译:

太赫兹量子级联激光器的物理和技术

摘要

即使已经在七十年代,在量子级联激光器(QCL)概念发明之后,仍有人认为该设备可以在电磁频谱的THz(远红外)范围内工作,但直到2002年,该设备才问世。演示了第一个工作的THz QCL。此后不久,进度很快。在2-3年的时间里,工作温度提高了,生产了单模DFB器件,实现了外差收发器中的本地振荡器的应用,频率覆盖范围扩展到整个1-5 THz区域。在过去的几年中,技术进步不断提高性能:最高工作温度现已达到约250 K,并且已证明峰值输出功率约为1W。已经实施了多种光束工程技术,具有增强光谱纯度,改善光束质量和实现垂直发射的范围。并行地,已经设计了允许发射光的频率可调的各种方法,其中最有效的方案实现了大约中心发射频率的10%的调谐范围。通过采用色散补偿波导和固有的材料非线性,甚至可以直接从THz QCL生成频率梳。这份手稿回顾了太赫兹QCL运作的基本物理原理,为提高激光性能而开发的技术,并着重介绍了这个令人着迷的光电领域最新的最有希望的进展。已经设计出各种方法来允许发射光的频率可调,其中最有效的方案实现了大约中心发射频率的10%的调谐范围。通过采用色散补偿波导和固有的材料非线性,甚至可以直接从THz QCL生成频率梳。这份手稿回顾了太赫兹QCL运作的基本物理原理,为提高激光性能而开发的技术,并着重介绍了这个令人着迷的光电领域最新的最有希望的进展。已经设计出各种方法来允许发射光的频率可调,其中最有效的方案实现了大约中心发射频率的10%的调谐范围。通过采用色散补偿波导和固有的材料非线性,甚至可以直接从THz QCL生成频率梳。这份手稿回顾了太赫兹QCL运作的基本物理原理,为提高激光性能而开发的技术,并着重介绍了这个令人着迷的光电领域最新的最有希望的进展。通过采用色散补偿波导和固有的材料非线性。这份手稿回顾了太赫兹QCL运作的基本物理原理,为提高激光性能而开发的技术,并着重介绍了这个令人着迷的光电领域最新的最有希望的进展。通过采用色散补偿波导和固有的材料非线性。这份手稿回顾了太赫兹QCL运作的基本物理原理,为提高激光性能而开发的技术,并着重介绍了这个令人着迷的光电领域最新的最有希望的进展。

更新日期:2021-04-09
down
wechat
bug