当前位置: X-MOL 学术Mech. Based Des. Struct. Mach. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Wave propagation characteristics and absorbed energy capability of the electrically doubly curved system reinforced by nanocomposite on viscoelastic substrate
Mechanics Based Design of Structures and Machines ( IF 3.9 ) Pub Date : 2021-04-09 , DOI: 10.1080/15397734.2021.1907758
Liang Zhang 1
Affiliation  

Abstract

In the current analysis, an attempt is made to extend a two-dimensional model for absorbed energy capability, and wave dispersion information of the functionally graded graphene nanoplatelets reinforced composite (FG-GPLRC) doubly curved panel coupled with a piezoelectric patch. The material properties of GPLRC layer are modeled by considering viscoelastic relations between stress and strain as well as Halpin-Tsai, and the role of mixture assumptions. FSDT and Hamilton’s principle are taken into consideration for the exact derivation of the general governing equations and boundary conditions of the FG-GPLRC panel coupled with a piezoelectric patch. For developing a precise solution approach, the analytical solution procedure is eventually used. The results demonstrate that viscoelastic parameter, wave number, applied voltage, and thickness of the piezoelectric patch have an important role in the absorbed energy capability, and wave dispersion in the FG-GPLRC panel coupled with a piezoelectric patch. The golden and fundamental result of this research is that, when the applied voltage to the piezoelectric patch increases, the energy absorption by the system decreases. Also, at the higher value of the viscoelastic factor, there is not any effect from applied voltage on the phase velocity of the system. For the design and application of the current research, some inspiration and guidance are provided by theory and simulation results.



中文翻译:

粘弹性基底上纳米复合材料增强的电双曲面系统的波传播特性和吸收能量能力

摘要

在当前的分析中,尝试扩展功能梯度石墨烯纳米片增强复合材料 (FG-GPLRC) 双曲面面板与压电贴片的吸收能量能力和波色散信息的二维模型。GPLRC 层的材料特性通过考虑应力和应变之间的粘弹性关系以及 Halpin-Tsai 和混合假设的作用来建模。FSDT 和哈密顿原理被考虑用于 FG-GPLRC 面板与压电贴片耦合的一般控制方程和边界条件的精确推导。为了开发精确的求解方法,最终使用了解析求解程序。结果表明,粘弹性参数、波数、施加电压、压电贴片的厚度和厚度对 FG-GPLRC 面板与压电贴片的吸收能量能力和波色散具有重要作用。这项研究的黄金和基本结果是,当施加到压电贴片的电压增加时,系统吸收的能量会减少。此外,在粘弹性因子的较高值下,施加的电压对系统的相速度没有任何影响。对于当前研究的设计和应用,理论和仿真结果提供了一定的启发和指导。当施加到压电贴片的电压增加时,系统吸收的能量减少。此外,在粘弹性因子的较高值下,施加的电压对系统的相速度没有任何影响。对于当前研究的设计和应用,理论和仿真结果提供了一定的启发和指导。当施加到压电贴片的电压增加时,系统吸收的能量减少。此外,在粘弹性因子的较高值下,施加的电压对系统的相速度没有任何影响。对于当前研究的设计和应用,理论和仿真结果提供了一定的启发和指导。

更新日期:2021-04-09
down
wechat
bug