当前位置: X-MOL 学术Nat. Photon. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Room-temperature electron spin polarization exceeding 90% in an opto-spintronic semiconductor nanostructure via remote spin filtering
Nature Photonics ( IF 35.0 ) Pub Date : 2021-04-08 , DOI: 10.1038/s41566-021-00786-y
Yuqing Huang , Ville Polojärvi , Satoshi Hiura , Pontus Höjer , Arto Aho , Riku Isoaho , Teemu Hakkarainen , Mircea Guina , Shino Sato , Junichi Takayama , Akihiro Murayama , Irina A. Buyanova , Weimin M. Chen

An exclusive advantage of semiconductor spintronics is its potential for opto-spintronics, which will allow integration of spin-based information processing/storage with photon-based information transfer/communications. Unfortunately, progress has so far been severely hampered by the failure to generate nearly fully spin-polarized charge carriers in semiconductors at room temperature. Here we demonstrate successful generation of conduction electron spin polarization exceeding 90% at room temperature without a magnetic field in a non-magnetic all-semiconductor nanostructure, which remains high even up to 110 °C. This is accomplished by remote spin filtering of InAs quantum-dot electrons via an adjacent tunnelling-coupled GaNAs spin filter. We further show that the quantum-dot electron spin can be remotely manipulated by spin control in the adjacent spin filter, paving the way for remote spin encoding and writing of quantum memory as well as for remote spin control of spin–photon interfaces. This work demonstrates the feasibility to implement opto-spintronic functionality in common semiconductor nanostructures.



中文翻译:

通过远程自旋过滤在光自旋电子半导体纳米结构中室温电子自旋极化超过 90%

半导体自旋电子学的一个独特优势是其在光自旋电子学方面的潜力,这将允许基于自旋的信息处理/存储与基于光子的信息传输/通信集成。不幸的是,迄今为止,由于未能在室温下在半导体中产生几乎完全自旋极化的电荷载流子,这严重阻碍了进展。在这里,我们展示了在非磁性全半导体纳米结构中在没有磁场的情况下在室温下成功产生超过 90% 的传导电子自旋极化,即使在高达 110°C 时也保持高水平。这是通过相邻的隧道耦合 GaN 自旋过滤器对 InAs 量子点电子进行远程自旋过滤来实现的。我们进一步表明,量子点电子自旋可以通过相邻自旋过滤器中的自旋控制进行远程控制,为远程自旋编码和量子存储器的写入以及自旋光子界面的远程自旋控制铺平了道路。这项工作证明了在普通半导体纳米结构中实现光自旋电子功能的可行性。

更新日期:2021-04-08
down
wechat
bug