当前位置: X-MOL 学术ISPRS Int. J. Geo-Inf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Precision Agriculture Workflow, from Data Collection to Data Management Using FOSS Tools: An Application in Northern Italy Vineyard
ISPRS International Journal of Geo-Information ( IF 3.4 ) Pub Date : 2021-04-07 , DOI: 10.3390/ijgi10040236
Elena Belcore , Stefano Angeli , Elisabetta Colucci , Maria Angela Musci , Irene Aicardi

In the past decades, technology-based agriculture, also known as Precision Agriculture (PA) or smart farming, has grown, developing new technologies and innovative tools to manage data for the whole agricultural processes. In this framework, geographic information, and spatial data and tools such as UAVs (Unmanned Aerial Vehicles) and multispectral optical sensors play a crucial role in the geomatics as support techniques. PA needs software to store and process spatial data and the Free and Open Software System (FOSS) community kept pace with PA’s needs: several FOSS software tools have been developed for data gathering, analysis, and restitution. The adoption of FOSS solutions, WebGIS platforms, open databases, and spatial data infrastructure to process and store spatial and nonspatial acquired data helps to share information among different actors with user-friendly solutions. Nevertheless, a comprehensive open-source platform that, besides processing UAV data, allows directly storing, visualising, sharing, and querying the final results and the related information does not exist. Indeed, today, the PA’s data elaboration and management with a FOSS approach still require several different software tools. Moreover, although some commercial solutions presented platforms to support management in PA activities, none of these present a complete workflow including data from acquisition phase to processed and stored information. In this scenario, the paper aims to provide UAV and PA users with a FOSS-replicable methodology that can fit farming activities’ operational and management needs. Therefore, this work focuses on developing a totally FOSS workflow to visualise, process, analyse, and manage PA data. In detail, a multidisciplinary approach is adopted for creating an operative web-sharing tool able to manage Very High Resolution (VHR) agricultural multispectral-derived information gathered by UAV systems. A vineyard in Northern Italy is used as an example to show the workflow of data generation and the data structure of the web tool. A UAV survey was carried out using a six-band multispectral camera and the data were elaborated through the Structure from Motion (SfM) technique, resulting in 3 cm resolution orthophoto. A supervised classifier identified the phenological stage of under-row weeds and the rows with a 95% overall accuracy. Then, a set of GIS-developed algorithms allowed Individual Tree Detection (ITD) and spectral indices for monitoring the plant-based phytosanitary conditions. A spatial data structure was implemented to gather the data at canopy scale. The last step of the workflow concerned publishing data in an interactive 3D webGIS, allowing users to update the spatial database. The webGIS can be operated from web browsers and desktop GIS. The final result is a shared open platform obtained with nonproprietary software that can store data of different sources and scales.

中文翻译:

从数据收集到使用FOSS工具进行数据管理的精确农业工作流程:在意大利北部葡萄园的应用

在过去的几十年中,基于技术的农业(也称为精确农业(PA)或智能农业)得到了发展,正在开发新技术和创新工具来管理整个农业过程的数据。在此框架中,地理信息,空间数据和工具(例如UAV(无人飞行器)和多光谱光学传感器)在地理学中作为支持技术发挥着至关重要的作用。PA需要用于存储和处理空间数据的软件,而自由开放软件系统(FOSS)社区与PA的需求保持同步:已经开发了几种FOSS软件工具来进行数据收集,分析和恢复。采用FOSS解决方案,WebGIS平台,开放式数据库,用于处理和存储空间和非空间采集数据的空间数据基础架构,通过用户友好的解决方案有助于在不同参与者之间共享信息。然而,不存在一个全面的开源平台,除了处理无人机数据外,它还可以直接存储,可视化,共享和查询最终结果以及相关信息。确实,今天,使用FOSS方法进行PA的数据阐述和管理仍然需要几种不同的软件工具。此外,尽管某些商业解决方案提供了支持PA活动中管理的平台,但是这些解决方案都没有一个完整的工作流程,包括从获取阶段到处理和存储的信息的数据。在这种情况下,本文旨在为无人机和PA用户提供一种可复制FOSS的方法,以适应农业活动的运营和管理需求。因此,这项工作着重于开发一个完整的FOSS工作流程,以可视化,处理,分析和管理PA数据。详细地,采用多学科方法来创建可操作的网络共享工具,该工具能够管理由无人机系统收集的超高分辨率(VHR)农业多光谱信息。以意大利北部的葡萄园为例,说明数据生成的工作流程和Web工具的数据结构。使用六波段多光谱相机进行了无人飞行器勘测,并通过“运动结构”(SfM)技术对数据进行了细化,从而获得了3 cm分辨率的正射影像。监督分类器以95%的总准确度确定了行下杂草和行的物候期。然后,一组由GIS开发的算法允许使用单独树检测(ITD)和光谱指数来监视基于植物的植物检疫条件。实现了空间数据结构以树冠规模收集数据。工作流的最后一步涉及在交互式3D WebGIS中发布数据,从而允许用户更新空间数据库。可以通过Web浏览器和桌面GIS操作webGIS。最终结果是使用非专有软件获得的共享开放平台,该软件可以存储不同来源和规模的数据。一组由GIS开发的算法允许使用单个树检测(ITD)和光谱指数来监视基于植物的植物检疫条件。实现了空间数据结构以树冠规模收集数据。工作流的最后一步涉及在交互式3D WebGIS中发布数据,从而允许用户更新空间数据库。可以通过Web浏览器和桌面GIS操作webGIS。最终结果是使用非专有软件获得的共享开放平台,该软件可以存储不同来源和规模的数据。一组由GIS开发的算法允许使用单个树检测(ITD)和光谱指数来监视基于植物的植物检疫条件。实现了空间数据结构以树冠规模收集数据。工作流的最后一步涉及在交互式3D WebGIS中发布数据,从而允许用户更新空间数据库。可以通过Web浏览器和桌面GIS操作webGIS。最终结果是使用非专有软件获得的共享开放平台,该软件可以存储不同来源和规模的数据。
更新日期:2021-04-08
down
wechat
bug