Communications in Mathematical Physics ( IF 2.102 ) Pub Date : 2021-04-07 , DOI: 10.1007/s00220-021-04047-5 Zhengwei Liu, Jinsong Wu
Inspired by the quantum McKay correspondence, we consider the classical ADE Lie theory as a quantum theory over \(\mathfrak {sl}_2\). We introduce anti-symmetric characters for representations of quantum groups and investigate the Fourier duality to study the spectral theory. In the ADE Lie theory, there is a correspondence between the eigenvalues of the Coxeter element and the eigenvalues of the adjacency matrix. We formalize related notions and prove such a correspondence for representations of Verlinde algebras of quantum groups: this includes generalized Dynkin diagrams over any simple Lie algebra \(\mathfrak {g}\) at any level \(k\). This answers a recent comment of Terry Gannon on an old question posed by Victor Kac in 1994.
中文翻译:

反对称字符和傅立叶对偶
受量子McKay对应关系的启发,我们将经典的ADE Lie理论视为\(\ mathfrak {sl} _2 \)上的量子理论。我们引入了反对称特征来表示量子群,并研究了傅里叶对偶性以研究光谱理论。在ADE Lie理论中,Coxeter元素的特征值与邻接矩阵的特征值之间存在对应关系。我们将相关概念形式化,并证明量子群的Verlinde代数的表示形式具有这种对应关系:这包括任何简单的Lie代数\(\ mathfrak {g} \)在任何级别\(k \)上的广义Dynkin图。。这回答了特里·加农(Terry Gannon)最近对维克多·卡克(Victor Kac)在1994年提出的一个老问题的评论。