当前位置: X-MOL 学术Ann. Mat. Pura Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The compactness and the concentration compactness via p -capacity
Annali di Matematica Pura ed Applicata ( IF 1 ) Pub Date : 2021-04-07 , DOI: 10.1007/s10231-021-01098-2
T. V. Anoop , Ujjal Das

For \(p \in (1,N)\) and \(\Omega \subseteq {\mathbb {R}}^N\) open, the Beppo-Levi space \({\mathcal {D}}^{1,p}_0(\Omega )\) is the completion of \(C_c^{\infty }(\Omega )\) with respect to the norm \(\left[ \int _{\Omega }|\nabla u|^p \ dx \right] ^ \frac{1}{p}.\) Using the p-capacity, we define a norm and then identify the Banach function space \({\mathcal {H}}(\Omega )\) with the set of all g in \(L^1_{loc}(\Omega )\) that admits the following Hardy–Sobolev type inequality:

$$\begin{aligned} \int _{\Omega } |g| |u|^p \ dx \le C \int _{\Omega } |\nabla u|^p \ dx, \forall \; u \in {\mathcal {D}}^{1,p}_0(\Omega ), \end{aligned}$$

for some \(C>0.\) Further, we characterize the set of all g in \({\mathcal {H}}(\Omega )\) for which the map \(G(u)= \displaystyle \int _{\Omega } g |u|^p \ dx\) is compact on \({\mathcal {D}}^{1,p}_0(\Omega )\). We use a variation of the concentration compactness lemma to give a sufficient condition on \(g\in {\mathcal {H}}(\Omega )\) so that the best constant in the above inequality is attained in \({\mathcal {D}}^{1,p}_0(\Omega )\).



中文翻译:

通过p容量的致密性和浓度致密性

对于\(p \ in(1,N)\)\(\ Omega \ subseteq {\ mathbb {R}} ^ N \)打开,Beppo-Levi空间\({\ mathcal {D}} ^ {1 ,p} _0(\ Omega)\)\(C_c ^ {\ infty}(\ Omega)\)相对于规范\(\ left [\ int _ {\ Omega} | \ nabla u | ^ p \ dx \ right] ^ \ frac {1} {p}。\)使用p -capacity定义一个范数,然后标识Banach函数空间\({\ mathcal {H}}(\ Omega} \ )与该组所有的\(L ^ 1_ {LOC}(\欧米茄)\) ,其接纳以下的Hardy-Sobolev型不等式:

$$ \ begin {aligned} \ int _ {\ Omega} | g | | u | ^ p \ dx \ le C \ int _ {\ Omega} | \ nabla u | ^ p \ dx,\ forall \; u \ in {\ mathcal {D}} ^ {1,p} _0(\ Omega),\ end {aligned} $$

对于一些\(C> 0 \)此外,我们表征集合中的所有的\({\ mathcal {H}}(\欧米茄)\)的量,图\(G(U)= \的DisplayStyle \ INT _ {\ Omega} g | u | ^ p \ dx \)\({\ mathcal {D}} ^ {1,p} _0(\ Omega)\)上是紧凑的。我们使用浓度紧凑性引理的一个变体来给\(g \ in {\ mathcal {H}}(\ Omega)\)给出足够的条件,从而在\({\ mathcal {D}} ^ {1,p} _0(\ Omega)\)

更新日期:2021-04-08
down
wechat
bug