当前位置: X-MOL 学术Appl. Math. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A decoupled wavelet approach for multiple physical flow fields of binary nanofluid in double-diffusive convection
Applied Mathematics and Computation ( IF 4 ) Pub Date : 2021-04-06 , DOI: 10.1016/j.amc.2021.126232
Qiang Yu

The paper aims at applications of a decoupled wavelet method for investigating multiple physical steady flow fields of binary nanofluids in double-diffusive mixed convection. The Buongiorno’s mathematical model of nanofluids is further perfected in the presence of Dufour and Soret effects, incorporating with linear and nonlinear diffusiophoresis effects based on experiments [Chemical Engineering Science 176 (2018): 632–640]. Nonhomogeneous thermal boundaries corresponding to heat flux on vertical walls and convection heat transfer at the bottom along with moving top lid are effectively approximated by interpolated Coiflet-type wavelet. Highly coupled and nonlinear governing equations for the complex fields of temperature, nanoparticles volume fraction and solute concentration have been formulated and decomposed into linear differential ones by homotopy transformation. Numerical wavelet solutions with larger range of physical parameters are finally obtained and validated by solving a set of iterative algebra equations applying Galerkin method, which are difficult to be given by traditional numerical methods. The results reveal that nanoparticles and double-diffusive buoyancy parameters, the thermo-nanofluid and thermo-solutal Lewis numbers, the heat conductivity coefficient, the periodical heat flux with different phase differences, the diffusiophoresis parameters, the nanoparticles and solute Dufour parameters, the solute Soret parameter are of great significance on characteristics of heat and mass transfer in the complex flow.



中文翻译:

双扩散对流中二元纳米流体多个物理流场的解耦小波方法

本文旨在应用解耦小波方法研究双扩散混合对流中二元纳米流体的多个物理稳态流场。在存在Dufour和Soret效应的情况下,Buongiorno的纳米流体数学模型得到了进一步完善,并结合了基于实验的线性和非线性扩散电泳效应[化学工程科学176(2018):632–640]。通过内插的Coiflet型小波可以有效地逼近与垂直壁上的热通量以及底部的对流传热以及移动的顶盖相对应的非均匀热边界。高度耦合和非线性的控制方程,用于温度的复杂领域,纳米粒子的体积分数和溶质浓度已被配制,并通过同态转化分解为线性微分。通过应用Galerkin方法求解一组迭代代数方程组,最终获得并验证了具有较大物理参数范围的数值小波解,并用传统的数值方法难以给出。结果表明,纳米粒子和双扩散浮力参数,热纳流体和热固溶路易斯数,热导系数,具有不同相差的周期性热通量,扩散电泳参数,纳米粒子和溶质杜福尔参数,溶质Soret参数对于复杂流动中的传热和传质特性具有重要意义。通过应用Galerkin方法求解一组迭代代数方程组,最终获得并验证了具有较大物理参数范围的数值小波解,并用传统的数值方法难以给出。结果表明,纳米粒子和双扩散浮力参数,热纳流体和热固溶路易斯数,热导系数,具有不同相差的周期性热通量,扩散电泳参数,纳米粒子和溶质杜福尔参数,溶质Soret参数对于复杂流动中的传热和传质特性具有重要意义。通过应用Galerkin方法求解一组迭代代数方程组,最终获得并验证了具有较大物理参数范围的数值小波解,并用传统的数值方法难以给出。结果表明,纳米粒子和双扩散浮力参数,热纳流体和热固溶路易斯数,热导系数,具有不同相差的周期性热通量,扩散电泳参数,纳米粒子和溶质杜福尔参数,溶质Soret参数对于复杂流动中的传热和传质特性具有重要意义。用传统的数值方法很难给出。结果表明,纳米粒子和双扩散浮力参数,热纳流体和热固溶路易斯数,热导系数,具有不同相差的周期性热通量,扩散电泳参数,纳米粒子和溶质杜福尔参数,溶质Soret参数对于复杂流动中的传热和传质特性具有重要意义。用传统的数值方法很难给出。结果表明,纳米粒子和双扩散浮力参数,热纳流体和热固溶路易斯数,热导系数,具有不同相差的周期性热通量,扩散电泳参数,纳米粒子和溶质杜福尔参数,溶质Soret参数对于复杂流动中的传热和传质特性具有重要意义。

更新日期:2021-04-06
down
wechat
bug