当前位置: X-MOL 学术Aerosol Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiscale numerical modeling of solid particle penetration and hydrocarbons removal in a catalytic stripper
Aerosol Science and Technology ( IF 5.2 ) Pub Date : 2021-04-26 , DOI: 10.1080/02786826.2021.1909700
Mino Woo 1, 2 , George Giannopoulos 2 , Md Mostafizur Rahman 3 , Jacob Swanson 4 , Marc E. J. Stettler 1 , Adam M. Boies 2
Affiliation  

Abstract

The catalytic stripper has emerged as a technology for removal of semivolatile material from aerosol streams for automotive and aerospace emissions measurements, including portable solid particle emissions measurements governed by the Real Driving Emissions regulations. This study employs coupled energy and mass transfer models to predict solid particle penetration and hydrocarbon removal for various configurations of a catalytic stripper. The continuum-scale macromodel applies mass, momentum and energy conservation for the inlet heating region of a catalytic stripper whereby the catalyst monolith is represented by a porous medium. The particle and species dynamics inside the catalytic monolith were computed by coupled microsimulations of the monolith channel using boundary conditions from the macromodel. The results from the numerical simulations were validated with corresponding experimental data and employed using a parametric study of flow rate and catalyst length with a view to optimizing the operating condition. Results of the simulation and experiment show that solid particle penetration through the catalytic stripper can exceed approximately 60% for particles at 10 nm mobility diameter and hydrocarbons removal of >95% for an optimized catalytic stripper device.

Copyright © 2021 American Association for Aerosol Research



中文翻译:

催化汽提塔中固体颗粒渗透和碳氢化合物去除的多尺度数值模拟

摘要

催化汽提塔已成为一种从气溶胶流中去除半挥发性物质的技术,用于汽车和航空航天排放测量,包括受实际驾驶排放法规管辖的便携式固体颗粒排放测量。本研究采用耦合能量和传质模型来预测各种配置的催化汽提塔的固体颗粒渗透和碳氢化合物去除。连续尺度宏观模型对催化汽提塔的入口加热区域应用质量、动量和能量守恒,其中催化剂整体由多孔介质表示。使用宏观模型的边界条件,通过整体通道的耦合微观模拟计算催化整体内部的粒子和物种动力学。数值模拟的结果用相应的实验数据进行验证,并使用流速和催化剂长度的参数研究来优化操作条件。模拟和实验结果表明,对于流动直径为 10 nm 的颗粒,固体颗粒通过催化汽提器的渗透率可超过约 60%,并且对于优化的催化汽提器装置而言,碳氢化合物去除率大于 95%。

版权所有 © 2021 美国气溶胶研究协会

更新日期:2021-04-26
down
wechat
bug