当前位置: X-MOL 学术Ocean Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental study on bubble sweep-down characteristics of research vessels
Ocean Engineering ( IF 5 ) Pub Date : 2021-04-06 , DOI: 10.1016/j.oceaneng.2021.108963
Chun-yu Guo , Peng Xu , Wei Wang , Yang Han , Yun-fei Kuai , Yi-wei Fan

The issue of bubble sweep-down is of great importance within the field of marine research, as the phenomenon greatly affects the measurement accuracy of research vessels. To explore the characteristics of bubble sweep-down, an experimental study into this phenomenon in relation to research vessels was carried out. With the help of particle image velocimetry technology, the microbubble trajectory on the X-Y and X-Z planes was obtained by observing bubble sweep-down. It was found that the evolution trajectory of the X-Z plane had an approximately linear distribution in the experimental measurement range. By comparing the microbubble trajectory with the bow streamline obtained by the tuft method, it was found that the distribution of the streamline in the bow cannot be regarded as the trajectory of the microbubble, but the influence of bubble buoyancy and the tension of the water should be considered. Through further analysis, it was found that the thickness and width of the microbubble cloud cluster change greatly when the cluster is close to the bottom of the ship, and the change of the microbubble cloud cluster under high-speed conditions is much larger than that under low-speed conditions because is easier for the microbubble cloud to diverge and deform at high speed. The change in the microbubble cloud area under high-speed condition was lower than that under low-speed conditions, which was probably caused by the extrusion effect of flow fields around the bow on microbubble cloud clusters at high speed.



中文翻译:

研究容器的气泡降落特性的实验研究

气泡吹扫问题在海洋研究领域中非常重要,因为这种现象极大地影响了研究船的测量精度。为了探究气泡向下吹扫的特征,对与研究容器有关的这种现象进行了实验研究。借助粒子图像测速技术,通过观察气泡向下扫掠获得了XY和XZ平面上的微气泡轨迹。发现XZ平面的演变轨迹在实验测量范围内具有近似线性分布。通过将微泡的轨迹与通过簇绒法获得的弓形流线进行比较,发现流线在弓形中的分布不能被视为微泡的轨迹,但应考虑气泡浮力和水的张力的影响。通过进一步的分析,发现当微泡云团靠近船底时,其厚度和宽度变化很大,并且在高速条件下微泡云团的变化远大于在高速条件下的变化。低速条件,因为微气泡云更容易在高速下发散和变形。高速条件下微泡云区域的变化低于低速条件下的变化,这可能是由于弓形周围流场对高速微泡云簇的高速挤压作用引起的。结果发现,当微泡云团靠近舰船底部时,其厚度和宽度变化很大,在高速条件下微泡云团的变化远大于低速条件下的微泡云团的变化。因为微气泡云更容易高速发散和变形。高速条件下微泡云区域的变化低于低速条件下的变化,这可能是由于弓形周围流场对高速微泡云簇的高速挤压作用引起的。结果发现,当微泡云团靠近舰船底部时,其厚度和宽度变化很大,在高速条件下微泡云团的变化远大于低速条件下的微泡云团的变化。因为微气泡云更容易高速发散和变形。高速条件下微泡云区域的变化低于低速条件下的变化,这可能是由于弓形周围流场对高速微泡云簇的高速挤压作用引起的。并且微泡云团在高速条件下的变化比低速条件下的变化大得多,因为微泡云团更容易在高速下发散和变形。高速条件下微泡云区域的变化低于低速条件下的变化,这可能是由于弓形周围流场对高速微泡云簇的高速挤压作用引起的。并且微泡云团在高速条件下的变化比低速条件下的变化大得多,因为微泡云团更容易在高速下发散和变形。高速条件下微泡云区域的变化低于低速条件下的变化,这可能是由于弓形周围流场对高速微泡云簇的高速挤压作用引起的。

更新日期:2021-04-06
down
wechat
bug