当前位置: X-MOL 学术J. Sound Vib. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Adaptive nonreciprocal wave attenuation in linear piezoelectric metastructures shunted with one-way electrical transmission lines
Journal of Sound and Vibration ( IF 4.7 ) Pub Date : 2021-04-03 , DOI: 10.1016/j.jsv.2021.116113
Yisheng Zheng , Junxian Zhang , Yegao Qu , Guang Meng

In contrary to elastic media, it is easy to attain one-way coupling feature among electrical elements, which enables unidirectional transmission of electrical wave. In this paper, we explore and exploit the interaction of a piezoelectric beam with a one-way electrical transmission line to facilitate nonreciprocal transmission of elastic wave in the linear fashion. Theoretical dispersion analysis and numerical simulations are performed to reveal transmission behaviors of elastic wave in the presented piezoelectric metastructure. It is uncovered that, when the one-way electrical coupling feature is introduced, local-resonance bandgaps are maintained in opposite directions of the piezoelectric metastructure. However, the bandgap attenuation capability in one direction is increased compared to conventional local-resonance metastructures, in which no electrical coupling exists between cells, while that in the other direction is decreased. Therefore, nonreciprocal transmission of elastic wave emerges in this system due to the distinct bandgap attenuation capability in opposite directions. It is also revealed that this sort of nonreciprocal wave attenuation capability is adaptive with the one-way electrical coupling coefficient and the resistance of electrical cells. An experimental set-up of the piezoelectric metastructure is built and experimental results verify the nonreciprocity property and its adaptiveness. Overall, the presented piezoelectric metastructure provides a linear and concise approach to realize adaptive nonreciprocal transmission of elastic wave.



中文翻译:

单向输电线路分流的线性压电元结构中的自适应不可逆波衰减

与弹性介质相反,容易在电子元件之间获得单向耦合特征,这使得能够单向传输电波。在本文中,我们探索并利用压电梁与单向电传输线的相互作用,以促进弹性波以线性方式的非互易传输。进行了理论上的色散分析和数值模拟,以揭示所提出的压电元结构中弹性波的传输行为。发现,当引入单向电耦合特征时,在压电元结构的相反方向上保持局部共振带隙。但是,与传统的局部共振元结构相比,在一个方向上的带隙衰减能力有所提高,其中电池之间不存在电耦合,而另一方向上的电耦合则减小。因此,由于在相反方向上明显的带隙衰减能力,在该系统中出现了弹性波的不可逆传输。还揭示了这种不可逆的波衰减能力与单向电耦合系数和单电池的电阻相适应。建立了压电元结构的实验装置,实验结果验证了不可逆性及其适应性。总体而言,提出的压电元结构提供了一种线性且简洁的方法来实现弹性波的自适应非互易传输。由于相反方向上明显的带隙衰减能力,该系统中出现了弹性波的不可逆传输。还揭示了这种不可逆的波衰减能力与单向电耦合系数和单电池的电阻相适应。建立了压电元结构的实验装置,实验结果验证了不可逆性及其适应性。总体而言,提出的压电元结构提供了一种线性且简洁的方法来实现弹性波的自适应非互易传输。由于相反方向上明显的带隙衰减能力,该系统中出现了弹性波的不可逆传输。还揭示了这种不可逆的波衰减能力与单向电耦合系数和单电池的电阻相适应。建立了压电元结构的实验装置,实验结果验证了不可逆性及其适应性。总体而言,提出的压电元结构提供了一种线性且简洁的方法来实现弹性波的自适应非互易传输。还揭示了这种不可逆的波衰减能力与单向电耦合系数和单电池的电阻相适应。建立了压电元结构的实验装置,实验结果验证了不可逆性及其适应性。总体而言,提出的压电元结构提供了一种线性且简洁的方法来实现弹性波的自适应非互易传输。还揭示了这种不可逆的波衰减能力与单向电耦合系数和单电池的电阻相适应。建立了压电元结构的实验装置,实验结果验证了不可逆性及其适应性。总体而言,提出的压电元结构提供了一种线性且简洁的方法来实现弹性波的自适应非互易传输。

更新日期:2021-04-11
down
wechat
bug