当前位置: X-MOL 学术Biosyst. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of three-dimensional visualisation technology of the aerodynamic environment in a greenhouse using CFD and VR technology, part 1: Development of VR a database using CFD
Biosystems Engineering ( IF 5.1 ) Pub Date : 2021-04-03 , DOI: 10.1016/j.biosystemseng.2021.02.017
Rack-woo Kim , Jun-gyu Kim , In-bok Lee , Uk-hyeon Yeo , Sang-yeon Lee , Cristina Decano-Valentin

This study attempted to develop a virtual reality (VR) simulator to educate greenhouse farmers and consultants. In this first of two papers, computational fluid dynamics (CFD) simulation was used to analyse the aerodynamic environment inside the greenhouse for growing the tomato crop. Representative aerodynamic problems that can occur in winter and summer seasons inside greenhouses in Korea were derived through a field survey and literature review. The cases examined for CFD simulation were based on a high-rise three-span 1–2 W type greenhouse. Moreover, the CFD model was validated using the measured air temperature and wind speed in actual greenhouses. Then, the analysis of the aerodynamic environment inside a 1–2 W type greenhouse for growing the tomato crop was performed according to various environmental conditions using the validated CFD model. During the winter, the CFD-computed results revealed that the installation of a thermal curtain was essential to prevent heat loss. Heating efficiency was analysed when a duct was connected to the outlet of the heater. From the simulations, air temperature could be properly maintained when the interval between duct perforations was less than a ratio of 1.1 with a perforation angle of 45°. In the summer, both side and roof vents should be fully opened to maintain the maximum ventilation rate. Furthermore, the installation of a shading screen to prevent the increase of air temperature due to high solar radiation is recommended.



中文翻译:

使用CFD和VR技术开发温室中空气动力学环境的三维可视化技术,第1部分:使用CFD开发VR数据库

这项研究试图开发一个虚拟现实(VR)模拟器来教育温室农民和顾问。在这两篇论文的第一篇中,使用计算流体动力学(CFD)模拟来分析温室内种植番茄作物的空气动力学环境。通过实地调查和文献综述得出了韩国温室冬季和夏季可能发生的典型空气动力学问题。CFD模拟检查的案例基于高层三跨1-2 W型温室。此外,使用实际温室中测得的气温和风速对CFD模型进行了验证。然后,使用经过验证的CFD模型,根据各种环境条件,对1–2 W型温室内种植番茄作物的空气动力学环境进行了分析。在冬季,通过CFD计算得出的结果表明,安装热幕对于防止热量散失是必不可少的。当将管道连接到加热器的出口时,分析了加热效率。从模拟中可以看出,当风管穿孔之间的间隔小于45穿孔角度的比率1.1时,可以适当地保持空气温度。在夏季,应完全打开侧通风口和屋顶通风口,以保持最大通风速率。此外,建议安装遮光屏以防止由于高太阳辐射引起的空气温度升高。CFD计算的结果表明,安装热幕对于防止热量散失是必不可少的。当将管道连接到加热器的出口时,分析了加热效率。根据模拟,当导管穿孔之间的间隔小于45穿孔角度的比率1.1时,可以适当地保持空气温度。在夏季,应完全打开侧通风口和屋顶通风口,以保持最大通风速率。此外,建议安装遮光屏以防止由于高太阳辐射引起的空气温度升高。CFD计算的结果表明,安装热幕对于防止热量散失是必不可少的。当将管道连接到加热器的出口时,分析了加热效率。根据模拟,当导管穿孔之间的间隔小于45穿孔角度的比率1.1时,可以适当地保持空气温度。在夏季,应完全打开侧通风口和屋顶通风口,以保持最大通风速率。此外,建议安装遮光屏以防止由于高太阳辐射引起的空气温度升高。当导管穿孔之间的间隔小于1.1的比率且穿孔角度为45°时,可以适当地保持空气温度。在夏季,应完全打开侧通风口和屋顶通风口,以保持最大通风速率。此外,建议安装遮光屏以防止由于高太阳辐射引起的空气温度升高。当导管穿孔之间的间隔小于1.1的比率且穿孔角度为45°时,可以适当地保持空气温度。在夏季,应完全打开侧通风口和屋顶通风口,以保持最大通风速率。此外,建议安装遮光屏以防止由于高太阳辐射引起的空气温度升高。

更新日期:2021-05-18
down
wechat
bug