当前位置: X-MOL 学术IEEE Trans. NanoBiosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Functional Behavior of the Primary Cortical Neuronal Cells on the Large Surface of TiO₂ and SnO₂ Based Biosensing Device
IEEE Transactions on NanoBioscience ( IF 3.9 ) Pub Date : 2021-02-10 , DOI: 10.1109/tnb.2021.3058332
Uvanesh Kasiviswanathan , Chandan Kumar , Suruchi Poddar , Satyabrata Jit , Neeraj Sharma , Sanjeev Kumar Mahto

In this study, we report the fabrication of poly-L-lysine (PLL) coated large surface TiO 2 and SnO 2 based biosensing devices to analyze the influence of the functional behaviour of primary cortical neuronal cells. Through frequency-dependent impedance study, we observed an increase in the impedance values initially most likely due to cell adhesion, proliferation and differentiation processes leading to an increase in both the single-cell mass as well as overall cellular mass; however, it got decreased eventually with the progression of various other cellular functions including neural activity, synapse formation and neuron-neuron communication. Typically, formation and regulation of the neuronal junction i.e., synapses noticeably affected the functional behaviour of the fabricated biosensing device by increasing the neuronal communication and thereby improving the flow of current by altering the thin film resistance and capacitance. Further, the neuro-electrical phenomenon is validated by fitting the experimental impedance data to an equivalent electrical circuit model. A significant shift in the Nyquist plot was also observed visually, which indicates that this alternation is primarily due to change in characteristic behaviour of the fabricated biosensing device. Hence, we anticipate that the fabricated PLL coated large surface TiO 2 and SnO 2 based biosensing device can serve as a promising tool to monitor the influence of the functional behaviour of neuronal cells.

中文翻译:

基于 TiO2 和 SnO2 的生物传感装置大表面上原代皮层神经元细胞的功能行为

在这项研究中,我们报告了聚-L-赖氨酸 (PLL) 涂层大表面 TiO 2和 SnO 2的制备 基于生物传感设备来分析初级皮质神经元细胞功能行为的影响。通过频率依赖的阻抗研究,我们观察到阻抗值的增加最初很可能是由于细胞粘附、增殖和分化过程导致单细胞质量和整体细胞质量的增加;然而,随着各种其他细胞功能的进展,包括神经活动、突触形成和神经元-神经元通讯,它最终会减少。通常,神经元连接点(即突触)的形成和调节通过增加神经元通信并从而通过改变薄膜电阻和电容来改善电流流动,从而显着影响所制造的生物传感装置的功能行为。更远,通过将实验阻抗数据拟合到等效电路模型来验证神经电现象。在视觉上还观察到奈奎斯特图的显着变化,这表明这种变化主要是由于制造的生物传感装置的特征行为发生了变化。因此,我们预计制造的 PLL 涂覆大表面 TiO 基于2和 SnO 2的生物传感装置可以作为监测神经元细胞功能行为影响的有前途的工具。
更新日期:2021-04-02
down
wechat
bug