当前位置: X-MOL 学术Addit. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D-printed biodegradable composite scaffolds with significantly enhanced mechanical properties via the combination of binder jetting and capillary rise infiltration process
Additive Manufacturing ( IF 11.0 ) Pub Date : 2021-04-01 , DOI: 10.1016/j.addma.2021.101988
Ji-Ho Ahn , Jinyoung Kim , Ginam Han , DongEung Kim , Kwang-Hee Cheon , Hyun Lee , Hyoun-Ee Kim , Young-Jig Kim , Tae-Sik Jang , Hyun-Do Jung

For hard tissue engineering applications, biodegradable composite scaffolds have been extensively investigated because of their satisfactory mechanical properties and biocompatibility. Recently, 3D printing processes have received substantial attention in the tissue engineering field because of their ability to be customized for tissues that have suffered different types of loss or damage for each patient. However, previous studies on material extrusion-based techniques lack flexibility in the filler loading amount and cannot fulfill requirements that aim to enhance mechanical properties and biocompatibility. Herein, we propose a biodegradable polymer-based composite scaffolds with high ceramic loadings fabricated using the binder jetting (BJ) technique conjugated with capillary rise infiltration. A calcium sulfate hemihydrate (CSH) scaffold was fabricated using BJ-based 3D printing. Thereafter, CSH was transformed into biphasic calcium phosphate (BCP) using hydrothermal treatment, followed by heat treatment. Melted polycaprolactone (PCL) was infiltrated in the resulting BCP scaffold. BCP was then completely dispersed in the PCL matrix, and the calculated PCL loading in the BCP matrix exceeded 40 vol%. The PCL/BCP composite scaffold demonstrated the highest compressive strength, moduli, and toughness with the fracture mode shifted from brittle to less brittle. Moreover, a stable PCL/BCP surface promotes initial cell responses and shows sufficient proliferation and differentiation of pre-osteoblast cells.



中文翻译:

3D打印的可生物降解复合材料支架,结合了粘合剂喷射和毛细管上升渗透工艺,具有显着增强的机械性能

对于硬组织工程应用,由于其令人满意的机械性能和生物相容性,已经对可生物降解的复合支架进行了广泛的研究。最近,由于3D打印过程能够针对每个患者遭受不同类型的丢失或损坏的组织进行定制,因此3D打印过程已在组织工程领域引起了广泛的关注。然而,基于材料挤压的技术的先前研究缺乏填料填充量的灵活性,并且不能满足旨在增强机械性能和生物相容性的要求。在这里,我们提出了一种高生物负荷的可生物降解的聚合物基复合材料支架,该支架使用结合了毛细管上升渗透的粘合剂喷射(BJ)技术制造。使用基于BJ的3D打印制造了半水合硫酸钙(CSH)支架。此后,使用水热处理将CSH转化为双相磷酸钙(BCP),然后进行热处理。将熔融的聚己内酯(PCL)渗入所得的BCP支架中。然后将BCP完全分散在PCL基质中,计算出的BCP基质中PCL的负载量超过40%(体积)。PCL / BCP复合支架表现出最高的抗压强度,模量和韧性,且断裂模式从脆性转变为较脆性。此外,稳定的PCL / BCP表面可促进初始细胞反应,并显示成骨前细胞充分的增殖和分化。然后进行热处理。熔融的聚己内酯(PCL)渗入所得的BCP支架中。然后将BCP完全分散在PCL基质中,计算出的BCP基质中PCL的负载量超过40%(体积)。PCL / BCP复合支架表现出最高的抗压强度,模量和韧性,且断裂模式从脆性转变为较脆性。此外,稳定的PCL / BCP表面可促进初始细胞反应,并显示成骨前细胞充分的增殖和分化。然后进行热处理。熔融的聚己内酯(PCL)渗入所得的BCP支架中。然后将BCP完全分散在PCL基质中,计算出的BCP基质中的PCL负载量超过40%(体积)。PCL / BCP复合支架表现出最高的抗压强度,模量和韧性,且断裂模式从脆性转变为较脆性。此外,稳定的PCL / BCP表面可促进初始细胞反应,并显示成骨前细胞充分的增殖和分化。和韧性随着断裂模式从脆性转变为不太脆性。此外,稳定的PCL / BCP表面可促进初始细胞反应,并显示成骨前细胞充分的增殖和分化。和韧性随着断裂模式从脆性转变为不太脆性。此外,稳定的PCL / BCP表面可促进初始细胞反应,并显示成骨前细胞充分的增殖和分化。

更新日期:2021-04-08
down
wechat
bug