当前位置: X-MOL 学术Sci. Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A cellular platform for the development of synthetic living machines
Science Robotics ( IF 25.0 ) Pub Date : 2021-03-31 , DOI: 10.1126/scirobotics.abf1571
Douglas Blackiston 1 , Emma Lederer 1 , Sam Kriegman 2 , Simon Garnier 3 , Joshua Bongard 2 , Michael Levin 1, 4
Affiliation  

Robot swarms have, to date, been constructed from artificial materials. Motile biological constructs have been created from muscle cells grown on precisely shaped scaffolds. However, the exploitation of emergent self-organization and functional plasticity into a self-directed living machine has remained a major challenge. We report here a method for generation of in vitro biological robots from frog (Xenopus laevis) cells. These xenobots exhibit coordinated locomotion via cilia present on their surface. These cilia arise through normal tissue patterning and do not require complicated construction methods or genomic editing, making production amenable to high-throughput projects. The biological robots arise by cellular self-organization and do not require scaffolds or microprinting; the amphibian cells are highly amenable to surgical, genetic, chemical, and optical stimulation during the self-assembly process. We show that the xenobots can navigate aqueous environments in diverse ways, heal after damage, and show emergent group behaviors. We constructed a computational model to predict useful collective behaviors that can be elicited from a xenobot swarm. In addition, we provide proof of principle for a writable molecular memory using a photoconvertible protein that can record exposure to a specific wavelength of light. Together, these results introduce a platform that can be used to study many aspects of self-assembly, swarm behavior, and synthetic bioengineering, as well as provide versatile, soft-body living machines for numerous practical applications in biomedicine and the environment.



中文翻译:

用于开发合成生命机器的细胞平台

迄今为止,机器人群是由人造材料构成的。运动生物结构是由生长在精确形状的支架上的肌肉细胞制成的。然而,将新兴的自组织和功能可塑性开发成一个自我导向的生命机器仍然是一个重大挑战。我们在这里报告了一种从青蛙(非洲爪蟾)中生成体外生物机器人的方法) 细胞。这些异种机器人通过其表面存在的纤毛表现出协调运动。这些纤毛通过正常的组织模式产生,不需要复杂的构建方法或基因组编辑,使生产适合高通量项目。生物机器人由细胞自组织产生,不需要支架或微印刷;在自组装过程中,两栖动物细胞非常容易接受手术、遗传、化学和光学刺激。我们表明,异种机器人可以以多种方式在水环境中航行,在损坏后愈合,并表现出紧急的群体行为。我们构建了一个计算模型来预测可以从异种机器人群中引发的有用的集体行为。此外,我们提供了使用光可转换蛋白质的可写分子存储器的原理证明,该蛋白质可以记录暴露于特定波长的光。总之,这些结果引入了一个平台,可用于研究自组装、群体行为和合成生物工程的许多方面,并为生物医学和环境中的众多实际应用提供多功能的软体活体机器。

更新日期:2021-04-01
down
wechat
bug