当前位置: X-MOL 学术APL Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Compensating for artifacts in scanning near-field optical microscopy due to electrostatics
APL Photonics ( IF 5.6 ) Pub Date : 2021-03-01 , DOI: 10.1063/5.0031395
Tobias Nörenberg 1, 2 , Lukas Wehmeier 1, 2 , Denny Lang 3 , Susanne C. Kehr 1 , Lukas M. Eng 1, 2
Affiliation  

Nanotechnology and modern materials science demand reliable local probing techniques on the nanoscopic length scale. Most commonly, scanning probe microscopy methods are applied in numerous variants and shades, for probing the different sample properties. Scattering scanning near-field optical microscopy (s-SNOM), in particular, is sensitive to the local optical response of a sample, by scattering light off an atomic force microscopy (AFM) tip, yielding a wavelength-independent lateral resolution in the order of ∼10 nm. However, local electric potential variations on the sample surface may severely affect the probe–sample interaction, thereby introducing artifacts into both the optical near-field signal and the AFM topography. On the other hand, Kelvin-probe force microscopy (KPFM) is capable of both probing and compensating such local electric potentials by applying a combination of ac and dc-voltages to the AFM tip. Here, we propose to combine s-SNOM with KPFM in order to compensate for undesirable electrostatic interaction, enabling the in situ probing of local electric potentials along with pristine optical responses and topography of sample surfaces. We demonstrate the suitability of this method for different types of materials, namely, metals (Au), semiconductors (Si), dielectrics (SiO2), and ferroelectrics (BaTiO3), by exploring the influence of charges in the systems as well as the capability of KPFM to compensate for the resulting electric force interactions.

中文翻译:

补偿由于静电引起的扫描近场光学显微镜中的伪影

纳米技术和现代材料科学需要在纳米长度范围内可靠的局部探测技术。最常见的是,扫描探针显微镜法被应用在许多变体和阴影中,以探测不同的样品特性。散射扫描近场光学显微镜(s-SNOM)通过对原子力显微镜(AFM)尖端的散射光,对样品的局部光学响应特别敏感,从而按顺序产生与波长无关的横向分辨率〜10nm。但是,样品表面的局部电势变化可能会严重影响探针与样品的相互作用,从而将伪像引入光学近场信号和AFM形貌。另一方面,开尔文探针力显微镜(KPFM)能够通过向AFM尖端施加交流和直流电压的组合来探测和补偿这种局部电势。在这里,我们建议将s-SNOM与KPFM结合使用,以补偿不良的静电相互作用,从而实现原位探测局部电势以及原始的光学响应和样品表面的形貌。通过探索电荷在系统中的影响以及对材料的影响,我们证明了该方法适用于不同类型的材料,即金属(Au),半导体(Si),电介质(SiO 2)和铁电体(BaTiO 3)。 KPFM补偿产生的电力相互作用的能力。
更新日期:2021-04-01
down
wechat
bug