当前位置: X-MOL 学术Transp. Res. Part B Methodol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Car-following behavior characteristics of adaptive cruise control vehicles based on empirical experiments
Transportation Research Part B: Methodological ( IF 6.8 ) Pub Date : 2021-03-30 , DOI: 10.1016/j.trb.2021.03.003
Tienan Li , Danjue Chen , Hao Zhou , Jorge Laval , Yuanchang Xie

Emerging automated vehicle (AV) technologies are increasingly being deployed around the world and it is only a matter of time before the transportation landscape changes dramatically. Unfortunately, those changes cannot be well predicted due to the lack of empirical data. But adaptive cruise control (ACC) vehicles are common in the market and can be used to fill this gap. In this paper, we aim to characterize the empirical car-following behaviors of a commercial ACC system and understand how ACC behaves in different conditions and the underlying impact mechanism. It is found that for a single ACC: (i) the ACC response time is comparable to human drivers but much larger than the ACC controller time gap and it exhibits small variance, (ii) the ACC response can amplify or dampen an oscillation, (iii) after the oscillation, the stabilization process can exhibit overshooting or undershooting, and (iv) these CF behaviors depend largely on the ACC headway setting, speed level, and leader stimulus, which produce the impacts directly and/or indirectly through the mediation of earlier ACC behaviors. For a three-vehicle platoon, our main finding is that the change from one ACC vehicle to the next is progressive for oscillation growth, and regressive for deceleration, acceleration, and overshooting. This implies that in long platoons, oscillation amplitude tends to exacerbate very quickly, which forces ACC vehicles further upstream to apply very strong braking followed by a strong acceleration. This can cause significant overshooting and safety hazards.



中文翻译:

基于经验实验的自适应巡航控制汽车的跟车行为特性

新兴的自动驾驶汽车(AV)技术在世界范围内得到越来越多的部署,交通形势发生巨大变化只是时间问题。不幸的是,由于缺乏经验数据,这些变化无法得到很好的预测。但是自适应巡航控制(ACC)车辆在市场上很普遍,可以用来填补这一空白。在本文中,我们旨在表征商业ACC系统的经验跟车行为,并了解ACC在不同条件下的行为方式以及潜在的影响机理。发现对于单个ACC:(i)ACC响应时间可与人类驾驶员媲美,但比ACC控制器的时间间隔大得多,并且表现出很小的差异;(ii)ACC响应可以放大或衰减振荡,( iii)振荡后,稳定过程可能会出现过冲或下冲,并且(iv)这些CF行为在很大程度上取决于ACC前进设置,速度水平和领导者刺激,它们通过早期ACC行为的中介直接和/或间接产生影响。对于三排汽车,我们的主要发现是,从一辆ACC车辆到另一辆ACC车辆的变化是渐进的,以产生振荡,而渐进的是减速,加速和过冲。这意味着在长排中,振荡幅度趋于非常迅速地加剧,这迫使ACC车辆向上游进一步施加强烈的制动,然后产生强烈的加速度。这可能会导致严重的超调和安全隐患。和领导者刺激,通过早期的ACC行为的中介直接和/或间接产生影响。对于三排汽车,我们的主要发现是,从一辆ACC车辆到另一辆ACC车辆的变化是渐进的,以产生振荡,而渐进的是减速,加速和过冲。这意味着在长排中,振荡幅度趋于非常迅速地加剧,这迫使ACC车辆向上游进一步施加强烈的制动,然后产生强烈的加速度。这可能会导致严重的超调和安全隐患。和领导者刺激,通过早期的ACC行为的中介直接和/或间接产生影响。对于三辆汽车的排,我们的主要发现是,从一辆ACC车辆到另一辆ACC车辆的变化是渐进的,以产生振荡,而渐进的是减速,加速和过冲。这意味着在长排中,振荡幅度趋于非常迅速地加剧,这迫使ACC车辆向上游进一步施加强烈的制动,然后产生强烈的加速度。这可能会导致严重的超调和安全隐患。并针对减速,加速和超调进行回归。这意味着在长排中,振荡幅度趋于非常迅速地加剧,这迫使ACC车辆向上游进一步施加强烈的制动,然后产生强烈的加速度。这可能会导致严重的超调和安全隐患。并针对减速,加速和超调进行回归。这意味着在长排中,振荡幅度趋于非常迅速地加剧,这迫使ACC车辆向上游进一步施加强烈的制动,然后产生强烈的加速度。这可能会导致严重的超调和安全隐患。

更新日期:2021-03-31
down
wechat
bug