当前位置: X-MOL 学术Phys. Plasmas › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-energy-density-physics measurements in implosions using Bayesian inference
Physics of Plasmas ( IF 2.2 ) Pub Date : 2021-03-02 , DOI: 10.1063/5.0040616
J. J. Ruby 1 , J. A. Gaffney 2 , J. R. Rygg 1 , Y. Ping 2 , G. W. Collins 1
Affiliation  

Convergent high-energy-density (HED) experimental platforms are used to study matter under some of the most extreme conditions that can be produced on Earth, comparable to the interior of stars. There are many challenges in using these systems for fundamental measurements currently being addressed by new analysis methods, such as the combination of a reduced physics model and Bayesian inference, allowing a self-consistent inference of physical quantities with a robust error analysis. These methods in combination with simple (as compared to inertial confinement fusion implosions) implosion platforms, which can be modified to show sensitivity to different physical mechanisms of interest, are used to study the physical properties of matter under extreme conditions. This work discusses a subset of implosion targets for studying opacity effects, electron–ion equilibration, and thermal conductivity and, as an example, a system consisting of a thick-shelled, gas-filled laser-direct-drive implosion is used to show how a reduced model and Bayesian inference can help inform experimental design decisions such as diagnostic choice. It is shown that for this system that a combination of neutron and x-ray self-emission diagnostics is critical for constraining the details of the thermodynamic states in the system and that the conductivity exponent in a Spitzer like framework can be constrained to the 30% level in deuterium at gigabar conditions. This process can be applied to many HED systems to make underlying model assumptions explicit and facilitate experimental design and analysis.

中文翻译:

使用贝叶斯推断的内爆高能密度物理测量

会聚高能量密度(HED)实验平台用于研究某些可能在地球上产生的,与恒星内部相当的最极端条件下的物质。目前,通过新的分析方法解决这些系统用于基本测量的挑战很多,例如将简化的物理模型与贝叶斯推理相结合,从而通过可靠的误差分析实现对物理量的自洽推理。这些方法与简单的(与惯性约束聚变内爆相比)内爆平台相结合,可以对其进行修改以显示对感兴趣的不同物理机制的敏感性,这些方法用于研究极端条件下物质的物理性质。这项工作讨论了用于研究不透明效果的内爆目标的子集,电子-离子平衡和热导率,例如,由厚壳,充气激光直接驱动内爆组成的系统,用于说明简化的模型和贝叶斯推论如何帮助做出实验性设计决策,例如作为诊断选择。结果表明,对于该系统,中子和X射线自发射诊断方法的组合对于约束系统中热力学状态的细节至关重要,并且像Spitzer这样的框架中的电导率指数可以约束在30%千兆巴条件下的氘水平。此过程可应用于许多HED系统,以使基本模型假设明确并促进实验设计和分析。充气激光直接驱动内爆用于显示简化的模型和贝叶斯推断如何帮助告知实验设计决策(例如诊断选择)。结果表明,对于该系统,中子和X射线自发射诊断方法的组合对于约束系统中热力学状态的细节至关重要,并且像Spitzer这样的框架中的电导率指数可以约束在30%千兆巴条件下的氘水平。此过程可应用于许多HED系统,以使基本模型假设明确并促进实验设计和分析。充气激光直接驱动内爆用于显示简化的模型和贝叶斯推断如何帮助告知实验设计决策(例如诊断选择)。结果表明,对于该系统,中子和X射线自发射诊断方法的组合对于约束系统中热力学状态的细节至关重要,并且像Spitzer这样的框架中的电导率指数可以约束在30%千兆巴条件下的氘水平。此过程可应用于许多HED系统,以使基本模型假设明确并促进实验设计和分析。结果表明,对于该系统,中子和X射线自发射诊断方法的组合对于约束系统中热力学状态的细节至关重要,并且像Spitzer这样的框架中的电导率指数可以约束在30%千兆巴条件下的氘水平。此过程可应用于许多HED系统,以使基本模型假设明确并促进实验设计和分析。结果表明,对于该系统,中子和X射线自发射诊断方法的组合对于约束系统中热力学状态的细节至关重要,并且像Spitzer这样的框架中的电导率指数可以约束在30%千兆巴条件下的氘水平。此过程可应用于许多HED系统,以使基本模型假设明确并促进实验设计和分析。
更新日期:2021-03-31
down
wechat
bug