当前位置: X-MOL 学术Optim. Control Appl. Methods › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Supervised model predictive control of large-scale electricity networks via clustering methods
Optimal Control Applications and Methods ( IF 1.8 ) Pub Date : 2021-03-31 , DOI: 10.1002/oca.2725
Alessio La Bella 1 , Pascal Klaus 2 , Giancarlo Ferrari‐Trecate 2 , Riccardo Scattolini 1
Affiliation  

This article describes a control approach for large-scale electricity networks, with the goal of efficiently coordinating distributed generators to balance unexpected load variations with respect to nominal forecasts. To mitigate the difficulties due to the size of the problem, the proposed methodology is divided in two steps. First, the network is partitioned into clusters, composed of several dispatchable and nondispatchable generators, storage systems, and loads. A clustering algorithm is designed with the aim of obtaining clusters with the following characteristics: (i) they must be compact, keeping the distance between generators and loads as small as possible; (ii) they must be able to internally balance load variations to the maximum possible extent. Once the network clustering has been completed, a two layer control system is designed. At the lower layer, a local model predictive controller is associated to each cluster for managing the available generation and storage elements to compensate local load variations. If the local sources are not sufficient to balance the cluster's load variations, a power request is sent to the supervisory layer, which optimally distributes additional resources available from the other clusters of the network. To enhance the scalability of the approach, the supervisor is implemented relying on a fully distributed optimization algorithm. The IEEE 118-bus system is used to test the proposed design procedure in a nontrivial scenario.

中文翻译:

基于聚类方法的大规模电网监督模型预测控制

本文描述了一种大规模电力网络的控制方法,其目标是有效地协调分布式发电机,以平衡与名义预测相关的意外负载变化。为了减轻由于问题规模造成的困难,所提出的方法分为两个步骤。首先,网络被划分为集群,由几个可调度和不可调度的生成器、存储系统和负载组成。设计聚类算法的目的是获得具有以下特征的聚类:(i)它们必须紧凑,保持发电机和负载之间的距离尽可能小;(ii) 它们必须能够最大限度地在内部平衡负载变化。网络集群完成后,设计一个两层控制系统。在较低层,本地模型预测控制器与每个集群相关联,用于管理可用的发电和存储元件以补偿本地负载变化。如果本地资源不足以平衡集群的负载变化,则会向监督层发送电源请求,以最佳方式分配网络其他集群可用的额外资源。为了增强该方法的可扩展性,监控器的实现依赖于一个完全分布式的优化算法。IEEE 118 总线系统用于在不平凡的场景中测试建议的设计过程。如果本地资源不足以平衡集群的负载变化,则会向监督层发送电源请求,以最佳方式分配网络其他集群可用的额外资源。为了增强该方法的可扩展性,监控器的实现依赖于一个完全分布式的优化算法。IEEE 118 总线系统用于在不平凡的场景中测试建议的设计过程。如果本地资源不足以平衡集群的负载变化,则会向监督层发送电源请求,以最佳方式分配网络其他集群可用的额外资源。为了增强该方法的可扩展性,监控器的实现依赖于一个完全分布式的优化算法。IEEE 118 总线系统用于在不平凡的场景中测试建议的设计过程。
更新日期:2021-03-31
down
wechat
bug