当前位置: X-MOL 学术Glob. Planet. Change › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Crustal exhumation and depocenter migration from the Alpine orogenic margin towards the Pannonian extensional back-arc basin controlled by inheritance
Global and Planetary Change ( IF 3.9 ) Pub Date : 2021-03-24 , DOI: 10.1016/j.gloplacha.2021.103475
László Fodor , Attila Balázs , Gábor Csillag , István Dunkl , Gábor Héja , Bogomir Jelen , Péter Kelemen , Szilvia Kövér , András Németh , Dániel Nyíri , Ildikó Selmeczi , Mirka Trajanova , Marko Vrabec , Mirijam Vrabec

The formation and deformation history of back-arc basins play a critical role in understanding the tectonics of plate interactions. Furthermore, opening of extensional back-arc basins during the overall convergence between Africa and Europe is a fundamental process in the overall tectonic evolution of the Mediterranean and adjacent areas. In this frame, Miocene tectonic evolution of the western Pannonian Basin of Central Europe and its connection to inherited Cretaceous structures of the Eastern Alpine nappes are presented.

Revision of published and addition of new structural and thermochronological data, as well as seismic profiles from the western Pannonian Basin is complemented by high-resolution thermo-mechanical numerical modeling in order to propose a new physically consistent tectono-sedimentary model for the basin evolution. The onset of extension is dated as ~25–23 Ma, and higher rates are inferred between 19 and 15 Ma at the south-western part of the area (Pohorje, Kozjak Domes, Murska Sobota Ridge, and Mura-Zala Basin). Rift initiation involved the exhumation of the middle part of the Austroalpine nappe pile along low-angle detachment faults and mylonite zones. The Miocene low-angle shear zones could reactivate major Cretaceous thrust boundaries, the exhumation channel of ultra-high-pressure rocks of the Pohorje Dome, or Late Cretaceous extensional structures. Miocene extension was associated with granodiorite and dacite intrusions between 18.64 and 15 Ma. The Pohorje pluton intruded at variable depth from ~4 to 16–18 km and experienced ductile stretching, westward tilting, and asymmetric exhumation of its eastern side. Terrestrial early Miocene (Ottnangian to Karpatian, 19–17.25 Ma) syn-rift depositional environment in supradetachment basins evolved to near-shore and bathyal one by the middle Miocene (Badenian, 15.97–12.8 Ma). Deformation subsequently migrated eastwards to the western part of the Transdanubian Range (Keszthely Hills) and to newly formed grabens. In this formerly emerged terrestrial area active faulting started at 15–14.5 Ma and continued through the late Miocene almost continuously up to ~8 Ma but basically terminated in the Mura-Zala Basin by ~15 Ma (early Badenian). These observations suggest a ~200 km shift of active faulting, basin formation, and related syn-tectonic sedimentation from the SW (Pohorje and Mura-Zala Basin) toward the Pannonian Basin center. Building on the above described observational and modeling data makes the Pannonian Basin an ideal natural laboratory for understanding the coupling between deep Earth and surface processes.



中文翻译:

从遗传控制的地壳发掘和沉积中心迁移从高山造山带向潘诺期伸展弧后盆地

弧后盆地的形成和变形历史在理解板块相互作用的构造方面起着至关重要的作用。此外,在非洲和欧洲之间的整体融合过程中,伸展弧后盆地的开放是地中海及其邻近地区整体构造演化的基本过程。在该框架中,提出了中欧西部盘诺尼盆地的中新世构造演化及其与东阿尔卑斯山俯冲带的继承白垩纪构造的联系。

高分辨率的热力学数值模拟对已发布和增加的新的结构和热年代学数据以及来自Pannonian盆地西部的地震剖面进行了修订,从而为盆地演化提出了一个新的物理一致的构造-沉积模型。扩展的开始日期为〜25-23 Ma,在该地区的西南部分(Pohorje,Kozjak Domes,Murska Sobota Ridge和Mura-Zala盆地)推断出较高的扩张速率。裂谷开始涉及沿低角度分离断层和mylonite地带的奥土阿尔卑斯推覆桩中部的发掘。中新世低角度剪切带可以重新激活白垩纪主要逆冲边界,即Pohorje Dome的超高压岩石的掘出通道,或白垩纪晚期的伸展构造。中新世伸展与18.64至15 Ma之间的花岗闪长岩和榴辉岩侵入有关。Pohorje岩体在约4至16-18 km的不同深度侵入,并经历了延性的伸展,向西倾斜和东侧的不对称掘出。中上新世(Badenian,15.97-12.8 Ma)由上分离盆地中的陆相中新世早期(奥特南纪至喀尔巴阡山脉,19–17.25 Ma)同裂陷沉积环境演化为近岸和海底。变形随后向东迁移至跨丹布努山脉的西部(凯斯特海斯山)和新形成的grab石。在这个先前出现的陆地区域中,活跃断层始于15-14年。5 Ma,一直持续到中新世晚期,几乎一直持续到〜8 Ma,但基本上在Mura-Zala盆地终止了,直到〜15 Ma(早期的巴登尼安)。这些观察结果表明,活动性断层,盆地形成和相关的构造沉积从西南(波霍里和穆拉-萨拉-萨拉盆地)向潘诺尼盆地中心偏移了约200 km。建立在上述观测和建模数据的基础上,潘诺尼盆地成为了解深层地球与地表过程之间耦合的理想自然实验室。

更新日期:2021-04-11
down
wechat
bug