当前位置: X-MOL 学术Nano Express › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dopant activity for highly in-situ doped polycrystalline silicon: hall, XRD, scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM)
Nano Express Pub Date : 2021-03-19 , DOI: 10.1088/2632-959x/abed3e
Rosine Coq Germanicus 1 , Florent Lallemand 2 , Daniel Chateigner 1 , Wadia Jouha 3 , Niemat Moultif 3 , Olivier Latry 3 , Arnaud Fouchet 1 , Hugues Murray 1 , Catherine Bunel 2 , Ulrike Lders 1
Affiliation  

Progressing miniaturization and the development of semiconductor integrated devices ask for advanced characterizations of the different device components with ever-increasing accuracy. Particularly in highly doped layers, a fine control of local conduction is essential to minimize access resistances and optimize integrated devices. For this, electrical Atomic Force Microscopy (AFM) are useful tools to examine the local properties at nanometric scale, for the fundamental understanding of the layer conductivity, process optimization during the device fabrication and reliability issues. By using Scanning Capacitance Microscopy (SCM) and Scanning Spreading Resistance Microscopy (SSRM), we investigate a highly in situ doped polycrystalline silicon layer, a material where the electrical transport properties are well known. This film is deposited on a oxide layer as a passivating contact. The study of the nano-MIS (SCM) and nano-Schottky (SSRM) contacts allows to determine the distribution and homogeneity of the carrier concentration (active dopants), especially by investigating the redistribution of the dopants after an annealing step used for their activation. While the chemical analysis by Secondary Ions Mass Spectroscopy (SIMS) quantifies only the dopant concentration in the polycrystalline layer, the comparison with macroscopic characterization techniques as Hall effect measurements, supported with XRD characterization, shows that careful SCM and SSRM measurements can be used to highlight the dopant activation. This analysis gives a complete investigation of the local electrical properties of the passivating contact when the parameters (applied voltages and applied forces) of the AFM nano-contacts are correctly controlled.



中文翻译:

高原位掺杂多晶硅的掺杂活性:霍尔、XRD、扫描电容显微镜 (SCM) 和扫描扩散电阻显微镜 (SSRM)

随着半导体集成器件的不断小型化和发展,需要以不断提高的精度对不同器件组件进行高级表征。特别是在高掺杂层中,局部传导的精细控制对于最小化访问电阻和优化集成器件至关重要。为此,电子原子力显微镜 (AFM) 是检查纳米尺度局部特性的有用工具,可从根本上了解层导电性、器件制造过程中的工艺优化和可靠性问题。通过使用扫描电容显微镜 (SCM) 和扫描扩展电阻显微镜 (SSRM),我们研究了高度原位掺杂的多晶硅层,这种材料的电传输特性是众所周知的。该薄膜沉积在氧化层上作为钝化接触。纳米 MIS (SCM) 和纳米肖特基 (SSRM) 触点的研究可以确定载流子浓度(活性掺杂剂)的分布和均匀性,特别是通过研究用于激活的退火步骤后掺杂剂的重新分布. 虽然二次离子质谱 (SIMS) 的化学分析仅量化多晶层中的掺杂浓度,但与宏观表征技术作为霍尔效应测量的比较,在 XRD 表征的支持下,表明仔细的 SCM 和 SSRM 测量可用于突出显示掺杂激活。

更新日期:2021-03-19
down
wechat
bug