当前位置: X-MOL 学术J. Phys. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improved glucose oxidation catalytic current generation by an FAD-dependent glucose dehydrogenase-modified hydrogel electrode, in accordance with the Hofmeister effect
Journal of Physics: Energy ( IF 6.9 ) Pub Date : 2021-03-16 , DOI: 10.1088/2515-7655/abd877
Aimi Yoshida , Seiya Tsujimura

Herein, we describe the effect of varying anions in an electrolyte solution on current generation by a redox hydrogel electrode. The electrode surface is coated with a thin film of hydrogel matrix, consisting of an osmium (Os) redox polymer including tethered Os complexes, polymer backbone, and a redox enzyme. In this case, the enzymes employed are flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH), which catalyzes glucose oxidation, and the result was compared with that reported earlier for glucose oxidase (GOx). The hydrogel matrix facilitates efficient electron transfer from glucose to the electrode via collision of the Os complexes and thus acts as a mediator. The degree of impact of anions on current generation is characteristic of the Hofmeister series. Chaotropic anions, such as nitrate and chloride, increase and decrease the catalytic current produced by FAD-GDH and GOx hydrogel electrodes, respectively. Such anions can adsorb onto the cationic region of the FAD-GDH surface and induce a negative charge, which enhances electrostatic interactions between the enzyme and the positively charged Os polymer. Kosmotropic anions, such as sulphate and phosphate increase the catalytic current due to hydrogel shrinkage, which increases the relative concentrations of both enzyme and mediator within the hydrogel architecture due to an increase in density. High-performance electrode design depends on understanding the impact of ion identity on catalytic current responses of redox hydrogel electrodes.



中文翻译:

根据 Hofmeister 效应,通过 FAD 依赖性葡萄糖脱氢酶修饰的水凝胶电极改善葡萄糖氧化催化电流的产生

在此,我们描述了电解质溶液中不同阴离子对氧化还原水凝胶电极产生电流的影响。电极表面涂有一层水凝胶基质薄膜,由锇 (Os) 氧化还原聚合物组成,包括束缚的 Os 复合物、聚合物骨架和氧化还原酶。在这种情况下,使用的酶是黄素腺嘌呤二核苷酸依赖性葡萄糖脱氢酶 (FAD-GDH),它催化葡萄糖氧化,并将结果与​​早先报道的葡萄糖氧化酶 (GOx) 进行比较。水凝胶基质通过 Os 复合物的碰撞促进从葡萄糖到电极的有效电子转移,从而充当介体。阴离子对电流产生的影响程度是 Hofmeister 系列的特征。离液阴离子,如硝酸根和氯离子,分别增加和减少 FAD-GDH 和 GOx 水凝胶电极产生的催化电流。这种阴离子可以吸附到 FAD-GDH 表面的阳离子区域并产生负电荷,从而增强酶与带正电荷的 Os 聚合物之间的静电相互作用。由于水凝胶收缩,诸如硫酸盐和磷酸盐之类的亲液阴离子增加了催化电流,由于密度的增加,这增加了水凝胶结构内酶和介质的相对浓度。高性能电极设计取决于了解离子特性对氧化还原水凝胶电极催化电流响应的影响。这种阴离子可以吸附到 FAD-GDH 表面的阳离子区域并产生负电荷,从而增强酶与带正电荷的 Os 聚合物之间的静电相互作用。由于水凝胶收缩,诸如硫酸盐和磷酸盐之类的亲液阴离子增加了催化电流,由于密度的增加,这增加了水凝胶结构内酶和介质的相对浓度。高性能电极设计取决于了解离子特性对氧化还原水凝胶电极催化电流响应的影响。这种阴离子可以吸附到 FAD-GDH 表面的阳离子区域并产生负电荷,从而增强酶与带正电荷的 Os 聚合物之间的静电相互作用。由于水凝胶收缩,诸如硫酸盐和磷酸盐之类的亲液阴离子增加了催化电流,由于密度的增加,这增加了水凝胶结构内酶和介质的相对浓度。高性能电极设计取决于了解离子特性对氧化还原水凝胶电极催化电流响应的影响。由于密度的增加,这增加了水凝胶结构中酶和介质的相对浓度。高性能电极设计取决于了解离子特性对氧化还原水凝胶电极催化电流响应的影响。由于密度的增加,这增加了水凝胶结构中酶和介质的相对浓度。高性能电极设计取决于了解离子特性对氧化还原水凝胶电极催化电流响应的影响。

更新日期:2021-03-16
down
wechat
bug