当前位置: X-MOL 学术Acta Geophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulation of the M W = 7.9 Gulf of Alaska earthquake on January 23, 2018, by the stochastic finite fault model
Acta Geophysica ( IF 2.3 ) Pub Date : 2021-03-17 , DOI: 10.1007/s11600-021-00562-0
Li Qicheng , Yuan Shupeng , Zheng Xinjuan

On the premise of constraining the seismogenic fault structure of a future large earthquake, we proposed using empirical equations to determine the length, width, seismic moment and slip distribution of a large seismogenic fault plane and using the stochastic finite fault model to predict future large earthquakes. The ground motion time histories and response spectra recorded by 12 seismic stations on bedrock during the MW = 7.9 Gulf of Alaska earthquake on January 23, 2018, were simulated. The simulation error determined by the average ratio of the simulated spectrum amplitude to the recorded spectrum amplitude varied between 1.08 and 0.92 in the period range of 0–10 s, and the standard deviation of the simulation error at different frequencies did not exceed 1; the 95% confidence interval also did not change significantly with the period. The above analyses show that our simulation results reflect the mean ground motion. To further discuss the reliability of predicting future large earthquakes by the stochastic finite fault model, we redistributed the initial rupture point and slip distribution on the seismogenic fault plane by the quasi-random method, and the simulation errors and simulation results of the redistribution model were similar to those of the previous model. Further research confirmed that our method for obtaining the seismic source parameters is viable and that the stochastic finite fault model for the prediction of future large earthquakes is reliable, especially for large far-field earthquakes. The seismic stations that we used are all situated on bedrock on one side of the fault and do not involve rupture directivity, i.e., the seismic wave pathways may be similar, so the simulation results are ideal. However, if the rupture directivity, different site conditions, surface topography and basin effects are considered, it will be necessary to amend the proposed method.



中文翻译:

用随机有限断层模型模拟2018年1月23日的MW = 7.9的阿拉斯加湾地震

在约束未来大地震的发震断层构造的前提下,我们提出了利用经验方程式确定大型地震发生断面的长度,宽度,地震矩和滑动分布,并使用随机有限断层模型预测未来大地震的方法。 。M W期间基岩上12个地震台站记录的地面运动时间历史和响应谱 =模拟了2018年1月23日的7.9阿拉斯加湾地震。由模拟频谱幅度与记录频谱幅度的平均比确定的模拟误差在0-10 s的周期范围内在1.08和0.92之间变化,并且在不同频率下模拟误差的标准偏差不超过1;95%的置信区间也没有随时间段显着变化。以上分析表明,我们的仿真结果反映了平均地面运动。为了进一步讨论使用随机有限断层模型预测未来大地震的可靠性,我们采用准随机方法在地震发源断层平面上重新分配了初始破裂点和滑动分布,重新分配模型的仿真误差和仿真结果与以前的模型相似。进一步的研究证实,我们获得震源参数的方法是可行的,并且随机有限断层模型对未来大地震的预测是可靠的,特别是对于大远场地震。我们使用的地震台站都位于断层一侧的基岩上,并且不涉及破裂方向性,即地震波路径可能相似,因此模拟结果是理想的。但是,如果考虑到破裂方向性,不同的工地条件,表面地形和盆地效应,则有必要对所提出的方法进行修正。进一步的研究证实,我们获得震源参数的方法是可行的,并且随机有限断层模型对未来大地震的预测是可靠的,特别是对于大远场地震。我们使用的地震台站都位于断层一侧的基岩上,并且不涉及破裂方向性,即地震波路径可能相似,因此模拟结果是理想的。但是,如果考虑到破裂方向性,不同的工地条件,表面地形和盆地效应,则有必要对所提出的方法进行修正。进一步的研究证实,我们获得震源参数的方法是可行的,并且随机有限断层模型对未来大地震的预测是可靠的,特别是对于大远场地震。我们使用的地震台站都位于断层一侧的基岩上,并且不涉及破裂方向性,即地震波路径可能相似,因此模拟结果是理想的。但是,如果考虑到破裂方向性,不同的工地条件,表面地形和盆地效应,则有必要对所提出的方法进行修正。我们使用的地震台站都位于断层一侧的基岩上,并且不涉及破裂方向性,即地震波路径可能相似,因此模拟结果是理想的。但是,如果考虑到破裂方向性,不同的工地条件,表面地形和盆地效应,则有必要对所提出的方法进行修正。我们使用的地震台站都位于断层一侧的基岩上,并且不涉及破裂方向性,即地震波路径可能相似,因此模拟结果是理想的。但是,如果考虑到破裂方向性,不同的工地条件,表面地形和盆地效应,则有必要对所提出的方法进行修正。

更新日期:2021-03-17
down
wechat
bug